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Introduction 
 
Review of the scientific literature should focus on the interaction between riparian 
function, stream characteristics, and impacts, both positive and negative, from nearby 
forest management activities.  The life cycle needs of salmonids are well understood 
and have been documented in the Scientific Review Panel report of 2000 (SRP) and in 
the Primer found in the Appendices for each Riparian Exchange Function.  The Key 
Questions will focus on riparian function and potential impacts from forest management 
activities, but the linkage to salmon biology is important.  The initial focus of riparian 
Forest Practice Regulations is to limit or avoid significant impacts to existing riparian 
function and habitat regardless of specific salmon species needs.  Enhancement or 
restoration of specific water quality or instream elements is a much more site specific 
analysis. 
 
Each Key Riparian Function and subsequent Key Question is structured following a 
specific format.  Most  have “overarching“  Key Questions asking whether the scientific 
understanding of riparian unction is supported by research and then at what distance(s) 
from the stream channel does the feature contribute to the stream channel.  Additional 
sub questions are included that give a more specific bearing on forest management 
activities or a specific management buffer protection response.  These questions may 
provide insight into understanding the larger ecological role of the riparian function 
feature.   
 
In addition to understanding the Key Riparian Function, it is also important to assess 
natural variability and other more stochastic natural events.  Natural Variability from 
watershed to watershed is typically due to a watersheds unique physical condition (i.e. 
space) and unique history of natural disturbances (i.e. time).  The physical condition of a 
watershed can vary due to, but not limited to; geology, climate, precipitation patterns 
and resulting vegetation types.  Riparian habitats are typically changed by natural 
disturbances such as fire, flooding, and windthrow.  Stream channels can be changed 
by disturbances such as landslides, lateral channel erosion, peak flow flooding, and 
deposition of debris during peak flows.  All of these disturbances help create a highly 
diverse riparian plant communities and complex stream channel habitats (Gregory et al. 
1991).  Accordingly, uncertainty caused by stochastic events requires that riparian 
habitats and stream channel protection measures be reviewed and assessed on a site-
by-site basis as described in the Forest Practice Rules.  The natural disturbance history 
is our attempt to measure time, but in fact the watershed or stream channel is in 
constant change over time and review of scientific information should reflect this 
variability. 
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PRIMER: BIOTIC AND NUTRIENT RIPARIAN EXCHANGE 
FUNCTION 

 
The riparian vegetation area (zone) along forested streams serves critical biotic and 
nutrient transfer and exchange functions that directly and indirectly control the survival 
and growth of juvenile salmonids (e.g. Wilzbach et al. 2005, Jones et al. 2006). 
Therefore, the timing, magnitude, and qualitative aspects of these biotic and nutrient 
riparian influences are not only among the very best predictors of overall stream 
ecosystem health and the condition of the component salmonid populations (e.g. 
Naiman and Dechamps 1997, Gregory et al. 1991, Meyer et al. 2003, Moore and 
Richardson 2003), but they also constitute significant potential for management 
procedures to sustain and/or enhance these salmonid populations (e.g. Bilby and 
Bisson 1992). 
 
The riparian biotic and nutrient transfers and exchanges are directly or indirectly 
important to the growth and survival of juvenile salmonids. These can be categorized 
into: 1) light and nutrients (including dissolved organics), and 2) inputs of particulate 
organic matter and terrestrial invertebrates (see Figure 1). The general characteristics 
of the biotic and nutrient exchanges and transfers differ in a predictable way along a 
west to east gradient. For example, temperature is moderated by coastal climate and 
has less seasonal effect on in-stream metabolic rates of the resident organisms than in 
eastern drainages where both daily and seasonal temperature excursions are 
significantly greater. 
 
Shading by Riparian Vegetation Cover Over, and Transfer of Nutrients into, 
Streams 
 Light and nutrients regulate in-stream plant growth, primarily algae. The periphyton 
assemblage on surfaces in running water constitute the food resource for a group of 
aquatic invertebrates termed scrapers, after their behavior of scraping loose their 
attached algal food resource. Light has been shown to be limiting for algal growth in 
some shaded forest streams even under conditions of very low nutrient concentrations 
(Gregory 1980, 1983). Limitation of algal growth whether by nitrogen or phosphorous is 
primarily a function of the parent geology in a watershed (Allan 1995).  If light and/or 
nitrogen and/or phosphorous nutrients become available in significant excess over 
natural conditions, the algal community can move through a succession from a single 
cell and small colony community, largely of diatoms and green algae, to a filamentous 
colony dominated by blue-green (cyanobacteria) and green algae (Stockner and 
Shortreed 1978, Shortreed and Stockner 1983). The former provides a suitable food 
resource for scraper invertebrates, the latter does not (e.g. Dudley et al. 1986). 
Therefore, management actions that shift the periphyton to domination by filamentous 
forms has a severe negative impact on scrapers, some of which are important prey of 
juvenile salmonids. Increase of nutrients and light, especially if combined with the 
deposition of fine sediments, can favor the development of rooted vascular aquatic 
Appendix A-G  Page 6 of 183 
Request for Proposal: Scientific Literature Review of Forest Management Effects on Riparian Functions in 
Anadromous Salmonid Fisheries 
July 10, 2007 

 
Page 6 of 183 

 



 

plants (Clarke 2002). These vascular hydrophytes, including aquatic mosses, if they are 
present, function primarily as habitat for many invertebrates (e.g. Fisher and Carpenter 
1976). That is, they are sites for attachment and concealment, and serve as a food 
resource for only a very few, and these invertebrates are not commonly consumed by 
juvenile salmonids (Merritt and Cummins 1996). However, many of the invertebrate taxa 
that utilize vascular hydrophytes as a habitat are consumed by fish (Svendsen et al. 
2004). When filamentous algae and vascular hydrophytes die, they enter the detrital 
cycle and are consumed by gathering collector invertebrates, many of which are 
important food organism for juvenile salmonids (Svendsen et al. 2004). A simple and 
effective bioassay for nitrate and/or phosphate nutrient limitation of algal growth in 
streams has been developed and well tested (Fairchild and Lowe 1984). Diffusing 
substrates are used which can be evaluated visually (or by chlorophyll analysis) to 
determine if a given riparian condition is fostering light and/or nutrient limitation, and, if 
the latter, which nutrient is most limiting. 
 
Along with nitrogen and phosphorous, dissolved organic matter (DOM) can stimulate 
the growth of microorganisms that are responsible for the direct decomposition of 
particulate organic matter (POM) (Ward and Aumen 1986). These microbes also serve 
as the most important component of the coarse particulate organic matter (CPOM) food 
source of shredder macroinvertebrates and some of these are prey for juvenile 
salmonids (Cummins et al. 1989, Svendsen et al. 2004). 
 

Transfer of Riparian Litter and Terrestrial Invertebrates into Streams 
Litter derived from riparian vegetation is the dominant base of food chains in forested 
streams of orders 0 through 3. (Cummins et al.198, Cummins 2002). Up to 90% of the 
energy flow in such streams is attributable to this litter (Fisher and Likens 1973, 
Richardson et al. 2006). The processing times (normalized for temperature by 
expressing it as degree-days) of coarse litter, primarily leaves and needles, is known for 
a wide range of riparian plant species (Petersen and Cummins 1974, Webster and 
Benfield 1986, Cummins et al. 1989, Richardson et al. 2004). Riparian litter can be 
classified according to its processing rate, that is, the turnover time required to convert 
the material to some other form once it is in the stream. Most hard woods (e.g. alders, 
vine and big-leaf maples and some shrubs such as salmon berry and elder berry) have 
short processing times and are referred to as fast (turnover) litter (Petersen and 
Cummins 1974). By contrast, most conifers (e.g. redwood, Douglas fir) and broad-leaf 
evergreens (e.g. rhododendron and laurel), oak hardwoods, and willows have long 
processing times and are termed slow (turnover) litter (Petersen and Cummins 1974). 
Processing is defined as the sum of leaching of DOM, decomposition by microbes, 
feeding by shredder invertebrates, and mechanical fragmentation (Cummins et al. 
1989). The majority of leaching of soluble organics from wetted litter is rapid with the 
litter losing 20-40% of it’s dry mass in 24 to 72 hours (Petersen and Cummins 1974). 
This portion of litter processing is non-biological and and fairly independent of 
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temperatures from 5 to 20 ºC (Petersen and Cummins 1974, Dahm 1981). After the 
initial loss rapid loss of weight due to leaching, small amounts of DOM continue to leach 
slowly from litter and large woody debris (LWD; Cummins et al. 1983). The riparian 
terrestrial soil and litter also continuously leach small to moderate amounts of DOM into 
streams (Allan 1995). 
 
In order for riparian litter to be processed by microbes and shredders it must be retained 
in place in a given reach for a sufficient period for microbial conditioning and shredder 
feeding  to take place. Small woodland streams have been shown to be quite retentive, 
providing that sufficient wood debris and other obstructions are present. Once it is 
wetted, the major portion of the riparian litter introduced into a small stream is retained 
within the range of 100 meters (Cummins et al. 1989). The percent cover by species of 
riparian vegetation has been shown to be a good predictor of the percent composition of 
the litter entrained in a reach of stream. Linked to this, the hatching and major feeding 
by resident shredder invertebrates is keyed to the timing of the drop and entrainment of 
the different riparian species (Grubbs and Cummins 1986; Cummins et al. 1989, 
Richardson 2001) 
 
The end result of litter processing is microbial and invertebrate biomass and fine 
particulate organic matter (FPOM, <1mm>0.5 μm particle size) (Cuffney et al. 1990). 
FPOM transported in suspension is the major food of filtering collector invertebrates 
and, when it settles out on or into the sediments it is the food of gathering collector 
invertebrates (Merritt and Cummins 1996). These two invertebrate groups contain the 
most important prey items for juvenile salmonids (Wilzbach et al. 2006).    
 
The aquatic invertebrates that depend upon periphyton, plant litter, and FPOM as their 
food resources, and constitute important prey for juvenile salmonids in forested streams 
are tightly coupled to the riparian area, because of the restriction of algal populations by 
shading and organic matter transfers. The aquatic insects among these can be 
characterized as having deterministic life cycles that are adapted to stochastic 
environmental conditions such as flow and temperature regimes and the timing of 
riparian litter inputs. The general pattern is one in which the most vulnerable life stages 
are matched to the seasonal periods during which environmental conditions have the 
highest probability of being favorable (e.g. Fisher et al. 1982). Stream flows suitable to 
allow eggs and newly hatched nymphs and larvae to maintain their location and the 
availability of food for feeding nymphs and larva are seasonally timed (Grubbs and 
Cummins 1996, Richardson 2001). For example, invertebrate shredders lay their eggs 
in late summer and early fall when stream are at base flow. This timing leads to 
hatching of larvae and nymphs at the time of abscission of deciduous riparian 
hardwoods that are in the fast processing category and the food supply of the autumn-
winter shredders (Grubbs and Cummins 1996, Cummins et al. 1989). Spring –summer 
shredder populations rely on litter with longer processing times, such as conifer 
needles, as their food resource (Cummins, et al.1989, Robinson et al. 2000).   
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Terrestrial invertebrates also constitute transfers from the riparian area into the stream 
ecosystem. Included are canopy insects and their frass, annelids, spiders, and ants 
from the soil and terrestrial litter mat (Nakano and Murakami 2001, Allan et al. 2003). 
Among the terrestrial invertebrate inputs from the riparian area are the adult (and in 
some cases pupal) stages of aquatic insects. All of these transfers of terrestrial 
invertebrates to the stream can serve as important food sources for juvenile salmonids, 
at least seasonally. Aquatic invertebrates are more abundant in the winter and terrestrial 
forms are more abundant in the summer in juvenile salmonid diets. (Shigeru and 
Murakami 2001, Allan et al. 2003). 
  
The activities of the microbes and invertebrate shredders on leaf litter, the resulting 
FPOM that is generated, and the ensuing effect on invertebrate collectors in the 
smallest streams is transmitted down stream (e.g. Vannote et al. 1980, Webster et al. 
1999, Cummins and Wilzbach 2005, Meyer et al. 2007).  Woody debris is also a source 
of FPOM, although it is released more slowly (Ward and Aumen 1986). These 
cumulative effects from small headwater streams to larger tributaries constitute an 
important delivery system to juvenile salmonid populations down stream (e.g. Wipfli and 
Gregovich 2002, Wipfli and Musselwhite 2004) and constitute a basis for their protection 
(Cummins and Wilzbach 2005).  
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Figure 1: Riparian biotic and nutrient transfers and exchanges process  relative to 
growth and survival of juvenile salmonids 
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KEY QUESTIONS:  BIOTIC AND NUTRIENT RIPARIAN 

EXCHANGE FUNCTION 
 
The need to resolve uncertainties involving riparian biotic and nutrient transfers and 
exchanges before the available scientific information is applied to management 
prescriptions can be captured by one overarching question. 
 
Once objectives have been clearly identified (e.g. faster growth rates or higher densities 
of juvenile salmonids), what riparian plant species mix, stand age structure, and stem 
density are optimal for achieving the objectives for a specific species of juvenile 
salmonid?  These are rhetorical questions and objectives that are meant to be 
established by the Board, not the performing Entity.  However, to the extent the 
performing Entity can identify these objectives in literature reviewed as part of this 
contract, information on objectives stated in the literature should be disclosed.  
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This overarching question can be resolved into specific Key Questions given below. 
Embedded in the answer to these Key Questions must be the following:  
 
 A.  How does geographic setting modify the answer to the Key Question in hand?   
 
B. How does stream size modify the answer to the Key Question in hand? 
 
C. How does the context for comparison along a gradient from least disturbed to most 

disturbed modify the answer to the Key Question in hand? 
 
D. How do the forest management practices being examined relate to current 

California forest practices in the context of the modify the answer to the Key 
Question in hand? and 

 
E. How do the alterations of the riparian area relate to salmonid habitat quality and 

salmonid feeding efficiency modify the answer to the Key Question in hand? 
 
Questions Concerning Shading by Riparian Vegetation Cover Over, and Transfer 
of Nutrients Into the Stream 
 

1. How can management (manipulation) of the riparian area lead to the 
establishment and maintenance of algal stream communities most beneficial 
to juvenile salmonids? 

 
a. What riparian stand characteristics are most likely to produce light and nutrient 

conditions that favor a periphyton cover dominated by diatoms and single-cell 
or small colony green algae but will avoid (that is, remain below the threshold 
for) a community shift to filamentous algal forms?  

 
[Explanation: this is based on the background that a non-filamentous diatom-
green algae mix is best at supporting invertebrate scraper populations, which 
include important food organisms for juvenile salmonids, and that a 
filamentous-dominated periphyton supports few if any important invertebrate 
prey of juvenile salmonids.] 

 

Questions Concerning the Vegetative Characteristics of the Riparian Area 
 

 
2.  How can management (manipulation) of the riparian area lead to rapid 

processing (turnover) of riparian litter in the stream? 
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a. What riparian vegetation stand characteristics are most likely to produce 
nutrient conditions that favor the development and rapid growth of 
hyphomycete fungi colonizing leaf/needle litter?  

 
[Explanation: this is based on the background that hyphomycete fungi and 
associated bacteria that colonize and mineralize riparian-derived litter control 
the rate of utilization of the litter by shredder invertebrates and, therefore, the 
rate of FPOM generation. FPOM is an important component of the food of 
collector invertebrates  which include the majority of the aquatic-based prey of 
juvenile salmonids.]  

 
3. How can management (manipulation) of the riparian area produce and 

maintain a mix of litter inputs that favors the components of invertebrate 
prey organisms to yield higher growth rates and densities of juvenile 
salmonids? 

 
a. What riparian vegetation stand characteristics are most likely to produce the 

best mix of fast (rapid processing rates) and slow (slow processing rates) of 
litter transferred to the stream?  
 
[Explanation: this is based on the background that fast litter supports 
populations of invertebrates that feed and grow during the fall and winter and 
slow litter supports those that feed and grow during the spring and summer.  
Generation of FPOM from CPOM in all seasons favors year around growth 
and production of collector invertebrates (which include the majority of the 
important aquatic-based prey of juvenile salmonids), which in turn favors the 
growth and survival of juvenile salmonids]  

 
4. How can management (manipulation) of the riparian area produce and 
maintain a vegetation mix that favors the availability of terrestrial 
invertebrates to provide food for juvenile salmonids? 
a. What mix of riparian vegetation is most likely to produce the best populations 

of terrestrial invertebrates that are an important seasonal food source for 
juvenile salmonids?  

 
[Explanation: this is based on the background that different species of 
vegetation have differing amounts of terrestrial invertebrates associated with 
their foliage, stems, and other plant parts as well as with their terrestrial litter 
on the forest floor. Juvenile salmonids (growth and survival) are supported 
directly by terrestrial insects that serve as prey, and indirectly by insect frass 
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that forms a component of FPOM that is food for collector invertebrate 
populations that are prey for juvenile salmonids.] 

 
Questions Concerning Buffer Width 
5. What riparian buffer width is required to achieve desired conditions of algal 

growth  (question 1), litter turnover (question 2), and invertebrate prey for 
juvenile salmonids (questions 3 and 4)?  

 
6.   What valley configurations (e.g. side slopes) and geomorphological 

characteristics (LWD, sediments, channel structures) set the boundaries 
for the buffer width required to achieve the objectives in question 5? 

a. What geomorphic channel and side slope characteristics are important in 
setting the width of the riparian area (buffer) that?  

 
[Explanation: this is based on the background that the characteristics of the 
riparian area vegetation are responsible for transfers that influence the in-
stream biology leading to the production of prey for juvenile salmonids.] 

 
Questions Concerning Forest Management Practices and Natural 
Disturbance 
 
 

7.  Given a designated riparian buffer width necessary to achieve desired in-
steam biological objectives (questions 5 and 6), what have timber 
operations and management practices in riparian areas have been 
demonstrated to favor or inhibit these objectives? 

a. How have selective harvesting and operations at differing distances from 
stream channel bankfull enhanced or inhibited the development of stream 
invertebrate communities that favor increased growth and density of juvenile 
salmonids?  

 
[Explanation: this is based on the background that species-specific riparian 
vegetation cover is a good predictor of the relative abundance of liter species 
found in the channel. The amount of liter in the channel is a function of the 
channel configuration, the presence of retention structures, and the height of 
the litter producing vegetation. Forested stream channels that have been 
calibrated by known litter releases have retained most of the liter within 100 
meters of the release point.] 
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8.  Are there regional differences in the effects of natural disturbance or forest 
management activities on the biotic or nutrient riparian area functions? 

a. Do the same disturbance regimes or management activities have different 
effects in different regions (e.g. the coastal coast range, interior coast range, 
Cascade, or Klamath - Sierra Nevada)? 

 
[Explanation: this is based on the fact that there are significant geological, 
rainfall, and temperature regime differences from west to east, from low to 
high elevations, and from north to south.] 

KC 4/17/07 
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Appendix B:   Wood Riparian Exchange Function 
 
Primer, Key Questions and Initial List of Literature to be 
reviewed.  
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PRIMER: WOOD RIPARIAN EXCHANGE FUNCTION 
 
(Abstracted from Hassan, Hogan, Bird, May, Gomi, and Campbell, Spatial and temporal 
dynamics of wood in headwater streams of the Pacific Northwest, Jour of the Amer 
Water Res Assn., Aug 2005.) 
 
In general, wood within the channel boundary significantly alters flow hydraulics, 
regulates sediment transport and storage, and influences channel morphology and 
diversity of channel habitat (e.g., Swanson and Lienkaemper, 1978; Hogan, 1986; 
Bisson et al., 1987; Montgomery et al., 1995, 1996).  
 
In-channel wood plays an important role in determining aquatic habitat conditions and 
riparian ecology (e.g., Bisson et al., 1987; Bilby and Bisson, 1998).  
 
Wood is introduced to the stream channel through a variety of processes including 
mass wasting, tree fall (blowdown), and bank erosion.  
 
Fluvial and nonfluvial processes transport and redistribute wood introduced in upstream 
areas to downstream locations (e.g., Keller and Swanson, 1979; Lienkaemper and 
Swanson, 1987; Nakamura and Swanson, 1993; Hogan et al., 1998; Johnson et al., 
2000a; Benda et al., 2002, 2003; Lancaster et al., 2003).  
 
However, wood exerts its greatest geomorphic influence in channels with physical 
dimensions similar to or smaller than the size of wood (e.g., Bilby and Ward, 1989; Bilby 
and Bisson, 1998);  
therefore, wood plays a disproportionately large role in small headwater streams. 
 
Although wood dynamics and channel morphology of streams in the PNW have been 
studied in some detail, most of the research has occurred in relatively large streams and 
rivers (> third-order streams on 1:50,000-scale maps). Such results may not be 
applicable in headwater streams where episodic sediment and wood supply from 
adjacent hillslopes dominate channel dynamics and where fluvial transport of wood is 
restricted due to insufficient streamflow and narrow channels. The practical need to 
understand the physical and ecological roles of small streams has recently been 
highlighted by interest in restoring downstream ecosystems and the assessment of land 
management practices in relatively small watersheds (Moore and Richardson, 2003). 
 
Interest in wood dynamics in headwater channels stems from the recognition that these 
channels represent a distinct class of stream, with characteristic morphologies, 
processes, and dynamics (see Benda et al., 2005; Hassan et al., 2005).  
 
The focus is on the steeper portion of the channel network where episodic wood inputs 
and sediment from adjacent hillslopes exert significant control on channel dynamics and 
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morphology. In these channels wood tends to accumulate, and sediment is stored 
upstream of accumulations, transforming steep bedrock channels into alluvial reaches 
(Massong and Montgomery, 2000; May and Gresswell, 2003b; Montgomery et 
al.,2003b).  
 
In these streams, wood controls channel morphology by regulating the temporal, spatial 
character and the quantity of sediment stored within the channel zone, and this 
influences channel stability (e.g., Swanson et al., 1982; Bilby and Ward, 1989). 
 
The paper begins by defining small streams and addressing wood scaling issues 
relative to channel size. Then the paper reviews the current knowledge regarding each 
component of the wood budget in small streams. Next the paper discusses the spatial 
and temporal variability of wood in small streams, with special attention to geographic 
variability. Then an assessment of available models for the predicting wood dynamics in 
small streams is provided. The effect on wood dynamics of timber harvesting and 
riparian management on wood dynamics is considered. Finally, gaps in the knowledge 
are identified for future research on the wood dynamics in small streams. Due to the 
limited available information on small forested streams, certain information obtained 
from larger mountain rivers will be included in this review, and its applicability to small 
streams is assessed. 
 
Table 1 – Definition of relative wood size and relative channel size.  Matrix thresholds are arbitrary until 
further analysis justifies these classes. This scaling of wood to channel size allows use of studies in larger 
channels. 

 
Value of, need for, a wood budget to determine where wood comes from, where it is delivered 
to, where it is stored, how it is transported or depleted from a given drainage basin or stream 
reach. 
 
From a forest management context there is potential to affect each component of the budget, so 
it is important to know the relative importance of each component and which are most 
susceptible to impact. 
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Wood Recruitment 
The potential of landslides in mountainous landscapes can be increased by logging, 
road building, wind throw wildfire, earthquakes, and volcanic activity (Harmon et al., 
1986; Lienkaemper  and Swanson, 1987; Nakamura and Swanson, 2003). 
 
Research in the PNW has shown that landslides can provide a substantial quantity of 
wood to headwater streams (Keller and Swanson, 1979; Schwab, 1998; Hogan et al., 
1998; May, 2002; May and Gresswell, 2003a; Reeves et al., 2003).  
 
In contrast, other studies in Alaska, California, and Washington have found that mass 
movements may be of limited importance in supplying wood to larger streams (Murphy 
and Koski, 1989; Johnson et al., 2000a; Martin and Benda, 2001; Benda et al., 2002; 
Gomi et al., 2004; May and Gresswell, 2004).  
 
Another wood source into small streams is snow avalanches, a process that commonly 
destroys forest stands in the runout pathway. Repeated avalanches down established 
pathways prevent the growth of mature forests, so this process may be associated with 
the recruitment of relatively small wood. Where snow avalanches are an important 
landscape process, they provide the greatest wood recruitment in areas where the 
channel and hillslopes are coupled (Dave McClung, The University of British Columbia, 
January 6, 2005, personal communication) (see Figure 1 below) 
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.  
Fires, insect infestations, and disease outbreaks are other processes that 
influence the recruitment of wood to streams.  
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If high severity fires burn extensive areas around headwater streams, the amounts and 
characteristics of wood input to streams may be altered for long periods; wood inputs 
are likely to increase immediately after fires (Nakamura and Swanson, 2003). Burned 
wood may also break into smaller pieces that can choke the channel, thereby increasing 
channel instability and downstream fluvial transport of wood (e.g., Berg et al., 2002). 
The degree of fire damage to stands depends on fire severity, type (ground, surface, or 
crown), and spatial extent (Agee, 1993). Patterns of mortality due to forest fire vary 
among regional fire regimes, season, and topography. 
 
Compared to floodplains, upland areas, including small streams and riparian zones, are 
more frequently affected by forest fires because of their relatively dry conditions and 
strong winds (Agee, 1993). Fire can also affect the wood budget by altering the age 
structure of the forest, initiating episodic pulses of wood recruitment, consuming existing 
dead wood, and influencing the mobility of instream wood (Young, 1994; Tinker and 
Knight, 2000; Zelt and Wohl, 2004). 
 
Finally, insect infestations and disease outbreaks can episodically affect stand mortality 
in large areas. In the PNW, many disease and insect outbreaks appear to be related to 
fire suppression or exotic pathogens (Hessburg et al., 1994; Swetnam et al., 1995; 
Dwire and Kauffman, 2003). However, most insects and diseases affect only a single 
tree species, so the net effect on wood recruitment will depend upon the composition of 
the stand (Harmon et al., 1986).  
 
Streambank erosion may not significantly contribute wood to steep headwater streams 
because the channel is constrained by the adjacent hillslopes (Nakamura and Swanson, 
2003) and banks are often semi- or non-alluvial (e.g., Halwas and Church, 2002). Actual 
rates of bank erosion in headwater constrained streams are poorly documented but are 
believed to be minimal. However, in gentler areas with less bedrock constraints, bank 
erosion is likely (expected) to be a significant source of wood into channels. In 
headwater streams, wood is often suspended above the channel banks due to relatively 
narrow channel widths (relative to tree heights and diameters) and hillslope 
confinement. Direct input to the channel may not occur until a log is either broken or 
fragmented (Nakamura and Swanson, 1993). 
 

Wood storage 
Once delivered to the stream system, wood is stored for various durations in several 
different nvironments; these include areas in riparian zones and associated floodplains 
and within the channel boundaries (Figure 1, Table 3). 
 
few studies have referenced the criterion used to determine that portion of the wood 
actually interacting with the stream and fluvial processes. Robison and Beschta (1990a) 
examined the storage of wood in distinct zones within the stream system and developed 
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a classification system in which they identified and distinguished between wood within 
the channel and wood on the banks.  
 
Storage of wood within a system can be likened to a wood reservoir that has a 
characteristic residence time (Keller and Tally, 1979; Hogan, 1989). Wood reservoirs 
can be used to study wood dynamics over a range of temporal and spatial scales. In 
headwater streams, the temporal scale is likely to be a function of the frequency and 
magnitude of the wood mobilizing events (see the following section). 

Wood output 
Wood stored in the fluvial system is transferred out of a reach by downstream transport 
or lost through abrasion or in-situ decomposition.  
 
Log stability in channels is controlled by many factors, including piece dimensions 
(length and diameter) relative to the channel, wood integrity, attached root wads, and 
degree of anchoring in the channel bed and bank (e.g., Montgomery et al., 2003a,b).  
 
Braudrick et al. (1997) suggested three mechanisms of wood transport: floating in a 
congested manner (high concentration) by streamflow, floating in an uncongested 
manner, and debris flows (for more details see the section on modeling). 
 
Field studies show that log movement is more likely to occur as channel size increases 
and when logs are shorter than bankfull width, implying that fluvial transport of wood is 
more significant in higher order streams (e.g., Bilby and Bisson, 1998). 
 

Wood temporal and spatial variability 
Tthreshold occurs that corresponds to channels approximately 5 m wide, which is 
similar to the pattern observed by Jackson and Sturm (2002). 
 
(Excerpted from Lassettre and Harris, 2002, The Geomorphic and Ecological 
Influence of Large Woody Debris in Streams and Rivers) 
 
Timber harvest activities in streamside forests can directly affect wood input (Table 2, 
Swanson and Lienkaemper 1978, Bilby and Bisson 1998). 
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Table  2.  The effect of certain management practices on the characteristics and abundance of LWD 
within stream systems.  Timber harvest temporarily reduces input or changes the physical characteristics 
of subsequent inputs.  Flood control and road maintenance activities generally result in the removal of in-
channel wood.   
 

MANAGEMENT 
PRACTICE 

EFFECT REFERENCES 

• Temporary reduction in LWD input Bryant 1980, Andrus 1988, Murphy 
and Koski 1989 

• Second growth input smaller, less rot resistant 
with less profound effects on physical habitat 

Bilby and Ward 1991, Wood-Smith 
and Buffington 1996, Ralph et al. 1994 

• Removal of logging residue simplifies physical 
habitat by failing to distinguish between naturally 
occurring habitat-forming logs and leftover 
material 

Swanson et al. 1976, Swanson and 
Lienkaemper 1978, Beschta 1979, 
Bryant 1980, Keller and MacDonald 
1983, Bilby 1984, Bisson et al. 1987, 
Bilby  and Ward 1989 

• Extremely large amounts of logging material 
reduces intragravel flow, increases biological 
oxygen demand, reduces space available for 
invertebrates, and blocks fish migration 

Hall and Lantz 1968, Narver 1970, 
Brown 1974 

• Destabilization of hillslopes and increase in 
debris avalanches 

Swanson and Lienkaemper 1978 

• Narrow buffer strips (<20 m to 30 m) potentially 
reduce wood input 

McDade et al. 1990, Van Sickle and 
Gregory 1990 

Timber harvest 
 

• Buffer strips adjacent to clearcuts have higher 
occurrence of windthrow and are depleted of 
large wood sources rapidly  

Reid and Hilton 1998 

• Remove wood to decrease channel roughness, 
increase conveyance, and maintain flood 
capacity 

Marzolf 1978, Young 1991, Gippel et 
al. 1996 

Flood control and 
road maintenance 

• Remove wood and clear jams to keep culverts 
and bridges free of debris and reduce structural 
damage during storms 

Singer and Swanson 1983, Diehl 1997 

 
The harvesting of streamside forests may temporarily reduce or eliminate LWD 
recruitment to the stream (Bryant 1980). 
 
The recovery time for input to return to pre-harvest conditions may be quite long.  Fifty 
years after logging, debris from the current stand of a western Oregon stream 
contributed only 14% of total LWD volume and only 7% of the wood from the current 
stand contributed to pool formation (Andrus et al. 1988). 
 
The results indicate that some second growth stands must grow at least 50 years before 
trees contribute LWD in sizes and amounts similar to old growth forests.  A decay model 
calibrated in southeastern Alaska predicted a 70% reduction in wood 90 years after 
clear-cutting, and that full recovery exceeded 250 years (Murphy and Koski 1989).   
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Streams flowing through second growth forests have a lower frequency of LWD 
associated pools and fewer channel spanning logs than old growth streams, leading to 
a scour pool dominated system (Bilby and Ward 1991).  Thus, in low to mid-order 
streams the percentage of LWD formed waterfalls and the control of wood on gradient is 
decreased by timber harvest. 
 
Old growth logs are larger and retain more bedload sediment and fine organic debris.   
Fine organic debris influences the physical characteristics of large jams and may 
contribute to an increased diversity of pool types in old growth streams (Bilby and Ward 
1991). 
Changes in wood loading and abundance significantly alter stream morphology. Wood-
Smith and Buffington (1993) showed that pool frequency, pool depth, and local shear 
stress were significantly different in logged versus unlogged streams.   
 
Near-stream logging influences natural LWD input processes.  Depending on the 
method, harvest activities destabilize hillslopes and increase the likelihood of debris 
avalanches (Swanson and Lienkaemper 1978). 
 
Buffer strips are a common technique to reduce logging effects on forests and streams.  
Most LWD inputs come from within 20 m to 30 m of the stream channel and buffers 
more narrow than this zone of input potentially reduce the amount of available logs 
(McDade et al. 1990, Van Sickle and Gregory 1990). 
 
Buffer strips adjacent to clearcuts are exposed to higher wind velocities, increasing the 
occurrence of windthrown logs to the stream channel (Reid and Hilton 1998). 
 
In moderate to high gradient streams, logs play an important role in bedload storage 
(Figure 2), and the removal of LWD eliminates potential storage sites (Beschta 1979, 
Bilby 1984, Bilby and Ward 1989). 
 
The decrease in storage capacity and subsequent release of sediment simplifies 
physical habitat by filling in the deepest pools, reducing pool area, and smoothing 
channel gradient (Sullivan et al. 1987, Dominguez and Cederholm 2000). 
 
Debris removal affects salmonid populations by decreasing the amount of available 
hydraulic cover available during winter high flows, and by reducing stream wetted width 
and perimeter (Dolloff 1986, Elliott 1986). 
 
Alternatively, an excessive amount of logging material left in the stream may be 
damaging to fish populations.  Fine debris lying on the gravel surface impedes 
interchange between intragravel flow and surface water, reducing subsurface dissolved 
oxygen levels (Hall and Lantz 1969, Narver 1970, Brown 1974). 
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Reduced oxygen availability retards the development of salmonid embryos within the 
gravel.  The decomposition of wood increases biological oxygen demand, further 
reducing available dissolved oxygen (Narver 1970). 
 
Small pieces of wood and bark occupy interstitial pores, reducing the available living 
space for stream invertebrates (Narver 1970).   
 
Very large human induced accumulations of wood prevent upstream migration of 
anadromous salmonids (Brown 1974).  Much historical management of LWD in logged 
streams concentrated on the removal of excess debris to allow fish passage (Bilby and 
Bisson 1998).     
 
In systems influenced by human infrastructure, road maintenance and flood control 
activities affect the abundance of large wood.  Logs and riparian vegetation increase 
channel roughness, reduce conveyance, and are commonly removed by managers to 
maintain flood capacity (Marzolf 1978, Singer and Swanson 1983, Young 1991, Gippel 
et al. 1996). 
Possibly the first step in improving the management of LWD in California stream 
systems is to recognize the different roles it plays in different parts of the watershed.  
The stream classification proposed below explicitly does that. 
 
Table 3.  The gradient range and general characteristics of reach morphologies in alluvial channels (Data 
taken from Bisson and Montgomery 1996 and Montgomery and Buffington 1997). 

 
 CASCADE STEP-POOL PLANE-BED POOL RIFFLE 
GRADIENT • 0.08 to 0.30 • 0.04 to 0.08 • 0.01 to 0.04 • 0.001 to 0.02 

BED MATERIAL • Boulder • Cobble/boulder • Gravel/cobble • Gravel 

CONFINEMENT • Confined • Confined • Variable • Unconfined 

 
 

cascade 
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Figure 2.  Generalized long profile of alluvial channels showing spatial arrangement of reach 
morphologies, including forced step-pool and forced pool-riffle morphologies.  Forced morphologies 
extend beyond the gradient range of free-formed counterparts.  Gradient ranges of forced morphologies 
depicted above are interpreted from Montgomery et al. (1995) and Beechie and Sibley (1997).  The 
classifications are based on geomorphic processes and reflect basin wide trends in sediment transport 
and storage (Figure adapted from Montgomery and Buffington 1997). 
 
To ensure future supplies of LWD to stream channels, buffer strips serving as reservoirs 
of wood supply should be wide enough to encompass the zone of LWD input, typically 
within 20 m to 30 m of the stream channel (Lienkaemper and Swanson 1987, McDade 
et al. 1990, Van Sickle and Gregory 1990). 
Some researchers have argued for larger buffers, based on susceptibility of buffer strips 
next to clear-cuts to blow-down and rapid depletion of available streamside wood (Reid 
and Hilton 1998). 
 
The use of a selectively logged fringe buffer adjacent to the streamside buffer may 
serve to reduce abnormally high rates of windthrow and preserve natural input rates.  
Any selective  cutting within buffer strips should leave an abundant supply of the largest 
trees for recruitment (Murphy and Koski 1989, Abbe and Montgomery 1996). 
The use of a selectively logged fringe buffer adjacent to the streamside buffer may 
serve to reduce abnormally high rates of windthrow and preserve natural input rates.  
Any selective  cutting within buffer strips should leave an abundant supply of the largest 
trees for recruitment (Murphy and Koski 1989, Abbe and Montgomery 1996). 
 
Species, diameter, and wood decay rates influence the amount of wood recruitment 
potentially necessary (Murphy and Koski 1989).  
 
Along with the diameter and length of pieces of large wood, the riparian plant species 
involved largely determine the processing (turnover) time of large wood in streams. (e.g. 
Anderson et al. 1978; Anderson and Sedell 1979). The actual rate at which large wood 
of a given species is processed in a stream is a function of temperature, oxygen, 
moisture, microbial metabolism, invertebrate ingestion, and mechanical abrasion. 
Completely submerged wood is processed a great deal more slowly than damp wood , 
on which terrestrial fungal and invertebrate agents can act. (Harmon et al. 1986).  In 
general, wood of hard wood species is processed more rapidly than that of coniferous 
species. For example, red alder is among the most rapidly and Douglas fir is among the 
slowest (Anderson et al. 1978). These differences is disappearance rates of the wood 
types are primarily dependent upon the relative activities of biological agents (microbes 
and invertebrates) on the wood  (Harmon et al. 1986). 
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Table 4.  The possible management implications of preserving LWD input, transport, and presence within 
the stream channel.   
MANAGEMENT 

PRACTICE 
IMPLICATION REFERENCES 

• Buffer strips should be wider than zone of LWD input McDade et al. 1991, Van Sickle and 
Gregory 1990 

• Fringe buffers can protect streamside buffers from 
premature wood depletion 

Reid and Hilton 1998 

• Selective management in buffers should consider 
future input required based on instream surveys 

Bilby and Ward 1989, Murphy and 
Koski 1989 

• Selective management should leave large trees that 
will be stable and influence channel morphology 

Fetherston et al. 1995, Abbe and 
Montgomery 1996 

• Active management of buffer zones can increase 
recruitment of certain species and sizes of wood 

Beechie and Sibley 1997 

• Removal of logging debris best dealt with by 
selective removal 

Bryant 1983, Bilby 1984, Gurnell et al. 
1995 

• Knowledge of habitat conditions, and the size and 
abundance of LWD required to maintain conditions 
must be considered when removing instream wood 

Bryant 1983, Bilby 1984 

Timber harvest 

• Characteristics of unmanaged streams should guide 
re-introduction of wood 

Smith et al. 1993a, b, Montgomery et 
al. 1995, Abbe and Montgomery 1996, 
Beechie and Sibley 1997, Montgomery 
and Buffington 1997 

• Must gain quantitative understanding of effect of 
wood on flood heights and how moves through a 
system 

Young 1991, Braudrick  et al. 1997, 
Braudrick and Grant 2000 

• Design and modify bridges and culverts to allow for 
passage of woody debris 

Diehl 1997, Flanagan et al. 1998 

Flood control and 
road 
maintenance 

• Develop management that recognizes ecological 
value and impact of wood on human infrastructure 
and public safety 

Singer and Swanson 1983, Piegay 
and Landon 1997 

 
Forest managers should seek to increase the recruitment of certain species, primarily 
conifers which produce the largest and longest lasting LWD.  This may involve active 
management of deciduous riparian zones to promote conifer establishment and growth 
(Beechie and Sibley 1997).  This strategy should be considered in relation to position 
within the channel network.  Small channels (<10 m width) can form pools around 
smaller pieces of wood (<20 cm), such as alder logs.  Large to intermediate channels 
require greater diameter logs to form pools (>60 cm).  Data on variations in the size and 
amount of woody debris with changing stream size could be used to develop plans for 
numbers and sizes of trees to be achieved  (Bilby and Ward 1989).  
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KEY QUESTIONS:   WOOD  

 
A significant body of literature exists documenting the relationship of forest 
management practices to in-stream wood recruitment, delivery, budgeting, and future 
production along riparian zones. Seeking to resolve the remaining uncertainties related 
to forest management effects on in-stream wood and the riparian zone is the emphasis 
of this investigation for the BOF TAC.   
 
Embedded or implied in each key question below are the following issues for the 
contractor's synthesis: 
 
A.     Relationship to each of California's regions; 
 
B.     Context for riparian buffer strip size: stream order, stream class, topography, 
hydrologic regime, climate; 
 

Appendix A-G  Page 42 of 183 
Request for Proposal: Scientific Literature Review of Forest Management Effects on Riparian Functions in 
Anadromous Salmonid Fisheries 
July 10, 2007 

 
Page 42 of 183 

 



 

C.     Context for comparisons: pristine, "optimum", legacy, or pre-harvest conditions; 
 
D.     Relationship of the quality of forest management practices being evaluated to 
current California forest practices; ability of BMPs to effectively mitigate identified 
problems; 
 
E.      Relationship of alterations to salmonid habitat quality and feeding effectiveness. 
 
 
In the following question production of potential in-stream wood means the 
potential for living tree(s) in or near the riparian zone to become recruited as part 
of the dead and down wood in the stream.     
 
1)   How do forest management activities or disturbances in or near the riparian 

zone affect the production of potential in-stream wood, over space and time?   
 

a.) To what extent is vegetation in or near the riparian zone surrounding lower 
order streams (e.g. 0, 1st, 2nd) a significant source of potential in-stream wood 
in unmanaged and managed forest areas? Do these results differ for larger 
order streams?  

 
b.) What is the effect of current forest management practices, in or near riparian 

zones, bordering small and large order streams on production of potential in-
stream wood? To what extent and in what ways does plant succession stage 
or vegetative community have an effect?  

 
c.) To what extent and in what ways is production of potential in-stream wood 

from stream banks and flood-prone areas affected by current forest 
management practices?   

 
d.) What characteristics of riparian buffer zones affect the production of potential 

in-stream wood?  Is there a difference in wood production in unmanaged 
versus managed forests? 

e.) What is the effect of current forest practices on incipiently available down 
wood in or near the riparian zone for in-stream wood production? 

 
 

f.) How should forest management goals differ by stream order, vegetation type, 
and region to produce potential in-stream wood of the appropriate diameter 
size, species and other characteristics to maintain salmonid habitat over 
space and time? What minimum buffer widths have been shown to be 
effective? 
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g.) How can forest management practices encourage stand conditions that 
produce and maintain the potential for future in-stream wood over time? 

 
h.) What is the effect of natural disturbance on the production of potentially 

available wood to the stream?  
 
  
In the following question in-stream wood delivery means the physical process by 
which a living tree(s) became part of the dead and down wood in the stream.  
 
2)   How do forest management activities or disturbances in or near the riparian 

zone affect the delivery of in-stream wood onsite and/or downstream over 
space and time?  

  
 

a.) To what extent and with what mechanisms are areas in or near riparian zones 
of lower order streams (e.g. 0, 1st, 2nd) a significant source of in-stream wood 
delivery in unmanaged and managed forest areas? How do these results 
differ for higher order streams?  To what extent and with what mechanisms 
do low-order streams deliver in-stream wood to higher order, fish-bearing 
streams? 

 
b.) To what extent and in what ways is in-stream wood delivery from stream 

banks and flood-prone areas affected by current forest management 
practices?  To what extent and in what ways does plant succession stage or 
vegetative community have an effect?   

 
c.) How does forest management affect in-stream wood delivery to channels?  

 
d.) What is the effect of natural disturbance on the delivery of wood to a stream?   

 
e.) What is the effect of stand-level riparian forest conditions on wood delivery to 

streams to maintain salmonid habitat? 
 

f.) How should forest management goals differ by stream order, vegetation type, 
and region to deliver wood to the stream of the appropriate diameter size, 
species and other characteristics to maintain salmonid habitat over space and 
time? What minimum buffer widths have been shown to be effective? 

 
 
3.) Based on the results of the above, what minimum buffer width and 
characteristics are shown to be needed to maintain production and delivery of 
wood to the stream from managed forests? 
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a.) How do these results vary by geographical region and process, size of 

watershed, stream order, forest species mix and age, stream reach, stream 
habitat present, forest practices within and nearby the riparian zone, fish 
species, etc.? 

 
b.) How do these results vary by forest management practices in or near the 

riparian zone? 
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APPENDIX C:  HEAT RIPARIAN EXCHANGE FUNCTION –  
KEY QUESTIONS, INITIAL LIST OF LITERATURE TO BE REVIEWED. 
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PRIMER:  HEAT RIPARIAN EXCHANGE FUNCTION:  The 
Status of Knowledge for Heat Transfer Affecting 
Stream Temperature and Microclimate within 
Riparian Forest Buffers 

 
This primer discusses the processes of heat transfer within riparian ecosystems and the 
effect of forest management on water temperature and microclimate.   These 
interactions have been thoroughly and thoughtfully reviewed in a recent review article 
by R.D. Moore, D.L. Spittlehouse, and A. Story that appeared in the Journal of the 
American Watershed Resources Association (2005).  This article was part of a 
compendium of review articles by leading researchers in the field.  This review paper 
provides a very strong discussion of the mechanics of heat transfer and the role of 
riparian forests and stream factors in determining water temperature and microclimate 
characteristics in managed and unmanaged forest streams.  The TAC adopts this 
review paper as the primary basis for the heat and microclimate primer.  
 

Moore, R. D, D.L. Spittlehouse, and A. Story.  2005.   Riparian Microclimate and 
stream temperature response to forest harvesting: a review.  Journal of the 
American Water Resources Association 41(4): 813-834.  

 
 
The Moore et al. review paper (2005) was primarily focused on small streams, and does 
not thoroughly cover several topics important to the discussion of T&I rules in California.  
These include the effects of water temperature on salmon, and watershed-level 
temperature patterns.  The TAC committee authored a discussion of these topics that 
reviews the scientific literature in some depth on these topics.  These two documents 
together serve as the TAC’s Primer on Heat Transfer and Microclimate in Riparian 
Areas.   The TAC considers the literature reference lists attached to each of these two 
documents to be the supporting literature for the Primer.  Because the fine print in the 
copy of the Moore et al. (2005) article included in this package may be difficult to read, 
we have reproduced a copy of the literature citations and included it behind the article.   
 
Finally, the TAC developed a set of key questions that are meant to guide and focus the 
BOF literature review on the subject of riparian forests, heat transfer, microclimate, and 
salmon health.  The TAC also has identified recent references that should serve as a 
core for that literature review.   
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Summary of the effects of forest harvesting on riparian microclimate 
and stream temperature--a synthesis of key points from Moore et al. 
2005 and the TAC Discussion of the Biological Effects of Temperature 
on Salmonids 
 
 
This summary follows the organization of the Moore, Spittlehouse, and Story (2005) 
review of Temperature and Microclimate published in the Journal of the American Water 
Resources Association in 2005.  Key points are taken from this paper and summarized 
here in bulletized form.  A similar summary of the key points of the TAC-developed 
temperature biological effects and watershed temperature patterns is appended to this 
summary.  
 
The bulletized points in this document faithfully summarize the key findings of the Moore 
et al.(2005) paper, and the TAC addendum.  These concepts were developed with 
thorough referencing in the Moore et al. review article and the TAC primer.  For ease of 
reading, little or no referencing is included in this summary.  The reader is urged to read 
both documents provided after this summary.   

 

Introduction 
1) There have been many studies of stream temperature and somewhat fewer for 

riparian microclimate. 

2) There have been some excellent reviews previously (e.g. Beschta et al 1987).  

3) There is still a lively debate about how to manage riparian zones to protect 
temperature and microclimate. 

4) Most States require a riparian buffer to protect stream temperature and 
microclimate. 

5) The Moore et al review (2005) concentrates on small streams in the Pacific 
Northwest. 
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Riparian Microclimate 

Characteristics of Forest Microclimates 
1) Forest canopies affect the microclimate and ultimately stream temperature 

because canopies intercept the transmission of radiation.  
2) Tree species and stand densities affect evaporation processes, wind and light 

transmission. 
3) Riparian areas typically have elevated water tables and higher soil moisture 

than adjacent upland areas. 
4) Forest canopies tend to reduce the diurnal air temperature range compared to 

open areas (also reduce the soil temperature range).  
5) Lower air temperatures under a canopy will also create higher humidity as well.  
6) Relationship of riparian forest stands to topography will influence the extent, 

climate within, and effect on streams.  

Edge Effects and the Microclimate of Riparian Buffers 

1) The magnitude of harvesting related changes in riparian microclimate will 
depend on the width of riparian buffers and how far edge effects extend into the 
buffer.  

2) There have been studies of microclimate effects in forests, and to a more 
limited extent, riparian areas, around the world. 

3) Much of the change in microclimate takes place within about 1 tree height (15 
to 60 m) of the edge.   

4) Solar radiation, wind speed, and soil temperature adjust to interior forest 
conditions more rapidly than do air temperature and relative humidity.  

5) Edge orientation can be important, particularly when south facing.  

6) Studies of microclimate in riparian areas are more limited.  (Cites Ledwith from 
California: 1.6 deg C decrease in air temperature per 10 m of buffer up to 30 
meters and 0.2 deg C per 10 m for widths from 30 m to 150 m.  

7) Only one pre-harvest/post-harvest study (Washington). Gradients from stream 
into upland existed for all variables except solar radiation and windspeed.  May 
have been enough to influence riparian fauna. 

Appendix A-G  Page 58 of 183 
Request for Proposal: Scientific Literature Review of Forest Management Effects on Riparian Functions in 
Anadromous Salmonid Fisheries 
July 10, 2007 

 
Page 58 of 183 

 



 

Thermal Processes and Headwater Stream Temperature 
1) An understanding of thermal processes is required as a basis for understanding 

stream temperature dynamics, in particular for interpreting and generalizing 
from experimental studies of forestry influences. 

2) As a parcel of water flows through a stream reach, its temperature is a function 
of energy and water exchanges across the water surface and the streambed 
and banks, and changes as energy inputs change. 

3) The temperature of a parcel of water represents the net heat exchange by 
radiation, turbulent exchange with the air (evaporation and convection), and 
conduction across the water surface and stream bed.  If additional water is 
advected into the reach from groundwater or hyporheic exchange, the 
temperature of the parcel will also be determined by the volumetric mixing of 
the temperature of the incoming water (Figure 1).   
 
Energy is transferred to the stream and the surrounding environment by solar 
radiation.  Energy is exchanged between the stream and the sky and 
atmosphere,  the vegetation and/or surrounding topography, and the 
streambed.  The potential for transferring heat among water, air, and vegetation 
is driven by the temperature gradients between them and the properties of each 
that determine how well each material transmits energy or conducts heat.      
 
Radiation inputs to a stream surface include incoming solar radiation (direct 
and diffuse) and longwave radiation emitted by the atmosphere, forest canopy 
and topography.   
  
Energy is exchanged between the water and air via convection (the transfer of 
heat from a surface to a moving fluid) and by evaporation.  These processes 
are driven by wind speed and the vapor pressure and temperature of air.    
 
Energy is exchanged between the water and streambed via conduction.  
 

4) A form of a reach energy balance equation is provided (Refer to Moore et al. 
2005).   

Appendix A-G  Page 59 of 183 
Request for Proposal: Scientific Literature Review of Forest Management Effects on Riparian Functions in 
Anadromous Salmonid Fisheries 
July 10, 2007 

 
Page 59 of 183 

 



 

 

 

Figure 1.  Factors controlling stream temperature.  Energy fluxes associated with water exchanges are shown as 
black arrows.  (From Moore et al. 2005).  

Radiative Exchanges 

1) Radiation inputs to stream surface include incoming solar radiation (direct and 
diffuse) and long-wave radiation emitted by the atmosphere, forest canopy and 
topography.  

2) Canopy will reduce the direct component of solar radiation and will redistribute 
some of the diffuse component. The details of solar radiation transmission 
through canopies are complex because of the complexities of the vegetation 
surfaces and materials and the horizontal and vertical variation in canopy 
density. 

3) Channel morphology (wide, narrow, and topographically shaded) will influence 
how much energy exchange will be blocked by vegetation or topography.  
Stream orientation relative to the path of the sun can also affect how long the 
stream “sees” the sky during the day. 
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4) When direct radiation comes from +30 degrees above the horizon, most of it 
can be absorbed within the water column and by the bed, and thus is effective 
at stream heating.  Vegetation or topography must block radiation within this 
sector of the sky view to be effective.  

5) Low solar angles at dawn and dusk, and during much of the annual solar cycle 
are not effective at stream heating because direct radiation comes in at too low 
of an angle to be absorbed and is reflected.  Vegetation within this sector of the 
sky view is not important in shading the stream.  

6) Incoming longwave radiation will be a weighted sum of the emitted radiation 
from the atmosphere, surrounding terrain, and the canopy, with the weights 
being their respective view factors.  

7) Peak  daytime net radiation over a stream without sky view blocking from 
canopy or topography can be more than five times greater than that under a 
forest canopy during summer.   

Sensible and Latent Heat Exchanges  
1) Energy is transferred between the water and the air by evaporation and 

convective heat transfer processes. Convection involves heat transfer between 
a fluid and an adjacent surface (air).  Evaporation involves the transfer of heat 
energy with a mass of water to the air.  Convective heat and mass transfer both 
depend strongly on the development of an aerodynamic boundary layer so they 
are strongly correlated to each other.   

2) Natural convection is due to the motion of the fluid due to the temperature, and 
therefore density, differences at the surface and away from the surface.  Forced 
convection is due to the movement of the fluid due to external forces such as 
wind.  The rate at which energy is transferred by convection depends on the 
temperature difference between the water surface and overlying air, the wind 
speed, and the thermal conductivity of the air. 

3) Evaporation depends on these factors, as well as the evaporative mass transfer 
coefficient as a function of wind speed.  

4) Where the stream is warmer than the air, heat transfer away from the stream is 
promoted by the unstable temperature stratification.  Where the air is warmer 
than the stream, the heat transfer from the air to the stream is dampened by the 
stable air temperature stratification.  

5) Heat loss via evaporation can be a particularly effective dissipation mechanism 
at higher water temperatures for larger streams. 

6) Heat energy exchange over very small stream may be limited by bank 
sheltering, particularly for narrow incised streams, potentially damping the 
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effects of openness to the sky.   

 

Bed Heat Exchanges and Thermal Regime of the Streambed 

1) Radiative energy absorbed at the streambed may be transferred to the water 
column by conduction and turbulent exchange and into the bed sediments 
directly by conduction and indirectly by advection in locations where water 
infiltrates into the bed. Given that turbulent exchange is more effective at 
transferring heat than conduction, much of the energy absorbed at the bed is 
transferred into the water column, and the temperature at the surface of the bed 
will generally be close to the temperature of the water column, except where 
there may be local advection of water with a different temperature. 

2) Energy is also transferred between the water and streambed by conduction (the 
transfer of energy at the molecular level). The direction and rate of transfer 
depends on the temperature gradients within the bed and the thermal 
conductivity properties of the bed material. 

3) The bed will normally serve as a heat sink and thus act as a cooling influence 
on the water on summer days.  At night the bed transfers heat back to the 
water, serving as a warming influence.  The net effect is to reduce the diurnal 
temperature range. 

4) Bed materials have different thermal conductivity.  Bedrock is very effective at 
absorbing heat, while pebbly surfaces are less effective.   

5) There is a thermal gradient within a streambed from surface to depth.  The 
temperature of bed surface sediments will be reasonably close to water 
temperature, and will experience daily fluctuation along with the stream water.   

6) Increase in water temperature from forest management effects can translate 
into the bed for some distance, depending on the type of bed materials and 
temperature of the surface water and on the local hydrologic environment.  The 
low thermal diffusivity of the stationary bed prevents extensive transfer of heat 
downward so that daily temperature variations diminish as depth increases.  
Daily temperature variation diminishes significantly by 0.5 meters. 

7) The decrease in bed temperature with depth is what allows water that 
downwells into the streambed to cool.    
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Groundwater Inflow  
1) Groundwater is typically cooler than the stream’s daytime temperature and 

warmer during winter, and thus tends to moderate diurnal and seasonal 
temperature variation 

2) Forest harvesting can increase soil moisture and groundwater levels  
3) Increases in groundwater volume could act to promote cooling, or at least 

ameliorate warming.  
4) Some have argued cutting could increase groundwater temperature due to 

greater flow volume with decreased interception losses and transpiration.  
5) There is no published research [at the time of this paper] that has examined 

groundwater discharge and temperature both before and after harvest as a 
direct test of the hypothesis of groundwater warming.  

Hyporheic Exchange 

1) Hyporheic exchange is a two-way transfer of water between a stream and its 
saturated sediments in the bed and riparian zone.  

2) Stream water typically flows into the bed at the top of a riffle and re-emerges at 
the bottom of a riffle. If the temperature of hyporheic water discharging  into a 
stream differs from stream temperature, then hyporheic exchange can influence 
stream temperature proportional to its volume and temperature.    

3) Hyporheic exchange can create local thermal heterogeneity and it can be 
important for creating microhabitat characteristics of water temperature in 
relation to both local and reach scale temperature patterns in headwater 
streams.  

4) There are significant methodological problems associated with quantifying rates 
of hyporheic exchange and its influence on stream temperature.  

 
 

Tributary Inflow 

The effects of tributary inflow depend on the temperature difference between inflow 
and stream temperatures and on the relative contribution to discharge and can be 
characterized by a simple mixing equation. 
    Tm = f1T1 + f2T2   
 
           where T is the inflow temperature and f is the proportional volume of the water 
bodies that join.  

Appendix A-G  Page 63 of 183 
Request for Proposal: Scientific Literature Review of Forest Management Effects on Riparian Functions in 
Anadromous Salmonid Fisheries 
July 10, 2007 

 
Page 63 of 183 

 



 

Longitudinal Dispersion and Effects of Pools 

1) Longitudinal dispersion results from variation in velocity through the cross-
section of a stream. Any effects on temperature distribution have not been well 
studied, but could smooth and dampen effects downstream.  

2) Deeper pools may have incomplete mixing creating thermal stratification.   
 

Equilibrium Temperature and Adjustment to Changes in Thermal 
Environment 

1) For a given set of boundary conditions (e.g., solar radiation, air temperature, 
humidity, wind speed) there will be an “equilibrium” water temperature that will 
produce a net energy exchange of zero and thus no further change in 
temperature as water flows downstream.  

2) There is a maximum possible temperature a parcel of water can achieve as it 
flows through a reach at a given time, assuming that boundary conditions 
remain constant in time and space.  

3) The thermal environment changes spatially with new representative conditions 
in important driving environmental variables such as stream width, flow volume, 
view factor.  The thermal environment changes in time with the daily and 
annual solar cycle.  Changes in conditions will cause changes in the maximum 
temperature.  

4) Equilibrium temperature may not be achieved because the boundary conditions 
may change in time and space before the water parcel can adjust fully to each 
thermal environment.  A natural factor potentially limiting the downstream 
distance of thermal effects in small streams is the daily fluctuation of 
temperature with the solar cycle.  Effects experienced in an upstream reach 
may be lost downstream as the stream cools at night.    

5) Equilibrium temperature will be lower where there is substantial inflow of cooler 
groundwater and will be higher for unshaded reaches due to solar input.   

6) The rate at which a parcel of water adjusts to a change in the thermal 
environment depends on stream depth because for deeper streams, heat would 
be added to or drawn from a greater volume of water per unit area. The deeper 
the stream, the less the diurnal fluctuation at the same solar input because of 
the thermal inertia of the water. 

7) The temperature in shallow streams adjusts quickly to a change in thermal 
environment and solar radiation.  

8) Flow velocity influences the length of time the parcel of water is exposed to a 
specific thermal environment.  The speed with which the water parcel moves 
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determines whether it can adjust fully to that thermal environment before it 
passes into a new one. 

9) Given that the depth and velocity of a stream tend to increase with discharge, 
the sensitivity of stream temperature to a given set of energy inputs should 
increase as discharge decreases.   

 

 

 

Figure 2.  Schematic temperature patterns along a stream flowing from intact forest, through a clear-cut, and back 
under intact forest for (a) shallow, low velocity and (b) deep, high velocity conditions. (Twef = equilibrium 
temperature in forest; Twec = equilibrium temperature in clearing) (From Moore et al. 2005). 

Thermal Trends and Heterogeneity Within Stream Networks   

1) Small streams tend to be colder and exhibit less diurnal variability when shaded 
than larger downstream reaches... Small streams tend to be more heavily 
shaded, often have a higher ratio of groundwater inflow, and are often located 
at higher elevations (cooler air).  

2) Local deviations from a dominant downstream warming trend may occur as a 
result of ground water inflow, hyporheic exchange, advection of water from 
other sources, or even changes in dominant variables such as air temperature.  
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3) Thermal heterogeneity has been documented at a range of spatial scales:  
within a pool, within a stream reach, within a river system. 

 

 

Stream Temperature Response to Forest Management 
1) Many studies of the effects of forest management on stream temperature have 

occurred. 

2) Some have BACI experimental design, some do not. 

3) Most studies have been conducted in the PNW in rain-dominated climates. 

 

Influences of Forest Harvesting Without Riparian Buffers 

1) Almost all streams that have buffers removed increase in summertime 
temperature.  

2) Harsh treatment yields high temperature response. 

3) Results appear to be more mixed in more recent years with changes in forest 
practices that limit forest management in the riparian area.  

4) Response in snowmelt-dominated areas is not well studied. However, there 
may be similar increases in stream temperature with canopy removal. 

5) Winter temperatures have also not been well studied.  
 

Influences of Forest Harvesting With Riparian Buffers 

1) Studies in rain-dominated catchments suggest that buffers may reduce, but not 
entirely protect against increases in summer stream temperature.  However, 
temperature increase is generally more moderate or very small when a buffer is 
left. 

2) Two studies in snow-dominated areas in Canada have also shown an increase 
in temperature with complete canopy removal of 1 to more than 5oC for a set of 
streams subject to a range of forest management treatments.  
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3) The protective effect of buffers can be compromised by blow-down. 

Thermal  Recovery Through Time 

1) Post-harvest temperatures should decrease through time as riparian vegetation 
recovers. 

2) Shade levels recover more rapidly in wetter forest types and at lower 
elevations.  

3) Effects seem to last 5-10 years if riparian vegetation is allowed to recover. 

4) Riparian canopy recovered more slowly when debris flows and channel 
disturbances affected streamside vegetation. 

5) A study in subboreal B.C. suggested that shading by low vegetation may not be 
as effective at protecting water temperature as that from trees.  

 

Comparison With Studies Outside The Pacific Northwest 

1) Studies conducted elsewhere in the world are in many ways consistent with 
results from the PNW as dictated by the physics of heat transfer.  

2) However, differences in important environmental variables, experimental 
techniques, and forestry practices limit the comparability of results. 

Effects of Forest Roads 

1) Some evidence for very small streams that even a road-right-of-way cut can be 
of sufficient length to cause local heating. 

Downstream and Cumulative Effects 

1) There can be a watershed level response to forest management, including a 
direct effect in disturbed reaches and by an upstream to downstream 
translation of temperature.  

2) Downstream transmission of heated water would increase the spatial extent of 
warmer temperatures. 

3) There is a debate about whether down-stream cooling (how much, how fast) 
can have a significant effect.  Some studies show cooling or heating, while 
others do not.  
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4) Streams can cool in the downstream direction by dissipation of heat out of the 
water column via convection and evaporation, or via dilution by cool inflows.  

5) Reported downstream temperature changes below forest clearings are highly 
variable. Some report streams cooled, some report streams continued to warm 
in the downstream direction.  

6) Whether cooling occurs may depend on ambient air temperatures and 
hydrologic conditions within the downstream reach 

7) To understand the mechanisms that allow cooling to occur requires more 
physical process-based research. 

8) Three factors may mitigate against cumulative effects of stream warming. 1) 
dilution could mitigate temperatures to a biologically suitable level, 2) the 
effects of energy inputs are not linearly additive throughout a stream network 
due to systematic changes in balance of energy transfer mechanisms. 3) 
Intercepting environments (lakes, reservoirs). 

9)  There may be secondary impacts from forest management such as stream 
widening and shallowing that may occur with excess sedimentation that may 
change the heat exchange dynamics and influence water temperature.  
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Monitoring and Predicting Stream Temperature and its 
Causal Factors 
 

Monitoring Stream Temperature 

1) Most recent studies have used submersible temperature loggers to measure 
water temperature. 

2) Forward-looking infrared radiometery from helicopters has been used to map 
the spatial distribution of temperature for investigating stream temperature 
patterns in medium to large streams.  The application of this technology to 
small streams is limited. The method can identify cool water areas within larger 
rivers. 

Measuring Shade 
 

1) To account for riparian vegetation effects on temperature, there must be a 
measure of the extent to which the overstream vegetation blocks energy 
exchange with the water in the stream.  Some type of measurement of canopy 
density is important, because this is the primary mechanism by which forest 
management affects water temperature.  

2) Shade, canopy cover, canopy density, and view-to-the-sky are often variously 
used to describe or infer the effect of the riparian vegetation on water 
temperature.  These measures express canopy as a density or percent 
overhead cover.  However, these measures are not synonymous and will give 
different results when comparing riparian canopy cover among studies. 

3) The vertical and horizontal variation in canopy characteristics that influence 
energy exchange are complex depending on the canopy structure and are 
variable along a stream reach.  All measures must ultimately reflect an average 
condition that represents the thermal reach. 

 
4) There are not only many different ways to describe the blocking influence of 

riparian vegetation but also many methods and measurement tools to estimate 
it.   
 
A. Blocking of the stream’s total view to the sky: (yields measure of %   
openness or its inverse blockage) 
      --Ocular estimates of the hemispherical view-to-the-sky aided by 
        spherical densiometer or fisheye lens photography  
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B. Focused measurement of the area of the sky view through which the sun 
passes (yields measure of blocking of direct solar radiation primarily) 
     –geometric calculations based on canopy and terrain angles  
     --Spherical densiometer-type instrument modified to view the solar pathway 
C. Indirect methods 
     --Compare radiation or lights levels using photovoltaic light meter above 
under the canopy and in the open 
   -- Back calculate canopy cover factor in heat energy balance by comparing 
temperature in open and under canopy 
   

5) To date, there has been only moderate success with using the more complex or 
indirect measures.    

Predicting the Influences of Forest Harvesting on Stream Temperature 

1) Several authors have devised empirical models based on multiple regression 
from environmental variables to predict a selected temperature characteristic 
such as MWAT or MMWT.  These types of models are simple with low 
requirements for input data, but they involve significant uncertainties, especially 
when applied to situations different from those represented in the calibration 
data.  Nevertheless, several authors have developed locally relevant models 
that can usually predict maximum temperature within 2oC with a regression 
coefficent (R2) of 0.60 to 0.70) 

2) The physics of heat transfer have been well studied, and a number of 
physically-based models incorporating energy balance concepts have been 
developed for application to individual stream reaches.  These include the 
seminal model introduced by Brown (1969, 1985), TEMP-84 (Beschta and 
Wetherred, 1984), TEMPEST (Adams and Sullivan, 1989), Heat Source (Boyd 
1996) and STREAMLINE (Rutherford et al. 1997).. 

3) Physically-based models all work on the same physics principles but are 
constructed with with somewhat different assumptions, formulations, variables 
to inform, and complexity of environmental characterization.  

4) There are also models to simulate stream temperatures at the stream network 
or catchment scale.  These include SNTEMP (Mattax and Quigley, 1989), 
Bartholow (1991 and 2000), and a model based on the S=HSPF (Hydrological 
Simulation Program-FORTRAN) model developed by the U.S. Environmental 
Protection Agency and the U.S. Geological Survey (Chen et al 1998a, b).   

5) Sullivan et al (1990) tested the ability of four reach scale models (TEMP-86, 
TEMPEST, Brown’s model, SSTEMP) and three catchment scale models 
(QUAL2E, SNTEMP, and MODEL-Y) to predict forest-related temperature 
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increases in Washington.  The reach models consistently (though not 
universally) achieved accurate temperature predictions (within 1-2oC) in many 
different types of streams and rivers.  This was despite significant variability in 
the data required by the models and methods of measurement, especially with 
regard to riparian canopy.  Simple models with relatively few variables 
performed as well as those that parameterized the environmental 
characteristics that drive the heat transfer modes in great detail.    

6) The catchment scale models required more input data than would generally be 
available for operational applications foreseen by the Washington study, and 
did not provide accurate predictions for mean, minimum, and maximum 
temperatures as tested.   

 

Discussion and Conclusions (From Moore et al. 2005) 

Summary of Forest Harvesting Effects on Microclimate and Stream 
Temperature on Small Streams 

1) Forest harvesting can increase solar radiation in the riparian zone as well as 
wind speed and exposure to air advected from clearings, typically causing 
increases in summertime air, soil, and stream temperatures and decreases in 
relative humidity 

2) Riparian buffers can help minimize these changes 
3) Edge effects penetrating into a buffer generally decline rapidly within about one 

tree height into the forest under most circumstances 
4) Solar radiation, soil temperature, and wind speed appear to adjust to forest 

conditions more rapidly than air temperature and relative humidity. 
5) Clearcut harvesting can produce significant daytime increases in stream 

temperature during summer, driven primarily by the increased solar radiation 
associated with decreased canopy cover but also influenced by channel 
morphology and stream hydrology.   

6) Winter temperature changes have not been as well documented but appear to 
be smaller in magnitude and sometimes opposite in direction in rain-dominated 
catchments. 

7) Although retention of riparian vegetation can help protect against temperature 
changes, substantial warming has been observed in streams with both 
unthinned and partial retention buffers.  

8) Comparing results  has been hampered by inconsistency in temperature 
metrics used among studies. 
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9) Increases stream temperatures associated with forest harvesting appear to 
decline to pre-logging levels within five to ten years in many cases, though 
thermal recovery can take longer in others.  There is mixed evidence for the 
efficacy of low, shrubby vegetation in promoting recovery.  

10) Temperature increases in headwater streams are unlikely to produce 
substantial changes in the temperatures of larger streams into which they flow, 
unless the total inflow of clearcut heated tributaries constitutes a significant 
proportion of the total flow of the receiving streams.  

11) Streams heated by canopy removal may or may not cool when they flow into 
shaded areas.  Where downstream cooling does not occur rapidly, the spatial 
extent of the thermal impacts is effectively extended to lower reaches, which 
may be fish bearing.   In addition, warming of headwater streams could reduce 
the local cooling effect where they flow into larger streams, thus diminishing the 
value of those cool water areas as thermal refugia.  

 

Biological Consequences and Implication for Forest Practices 
1) It is difficult to estimate the biological consequences of harvesting related 

changes in riparian microclimate and stream temperature of small streams 
based on existing results.  

2) In terms of terrestrial ecology in riparian zones, there is incomplete knowledge 
regarding the numbers of species that are unique to small streams and their 
riparian zones, as well as their population dynamics, sensitivity to microclimatic 
changes, and ability to recolonize disturbed habitat.   

3) A better understanding is required of how changes in the physical conditions in 
small streams and their interactions with chemical and biological processes 
influence their downstream exports. 

4) Based on the available studies, a one-tree-height buffer on each side of a 
stream should be reasonably effective in reducing harvesting impacts on both 
riparian microclimate and stream temperature.  

5) Narrower buffers may provide at least partial protection, but their effectiveness 
may be compromised by windthrow.  Alternative methods of designing buffers 
for protecting temperature in small streams may be explored.  

 
 
 

Issues For Future Research (Moore et al. 2005) 
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specifically in relation to the effects of forest practices. 

2) Shade is the dominant control on forestry-related stream warming in small 
streams. 

3) Determining shade in small streams is difficult and refined and consistent 
methods are needed. 

4) Hemispherical photography might be the way to go to solve subjectivity and 
methods problems. 

5) The effects of low and deciduous vegetation in controlling temperature in very 
small streams is not well understood. 

6) Further research should address the thermal implications of surface/subsurface 
hydrologic interactions, considering both local and reach scale effects of heat 
exchange associated with hyporheic flow paths.  

7) Bed temperature patterns in small streams and their relation to stream 
temperature should be researched in relation the effects on benthic 
invertebrates and other aquatic species. 

8) The hypothesis that warming of shallow ground water in clearcuts can 
contribute to stream warming should be addressed, ideally by a combination of 
experimental and process/modeling studies.  

9) The physical basis for temperature changes downstream of clearings needs to 
be clarified. Are there diagnostic site factors that can predict reaches where 
cooling will occur?  Such information could assist in the identification of thermal 
recovery reaches to limit the downstream propagation of stream warming.  It 
could also help identify areas within a cut block where shade from a retention 
patch would have the greatest influence.  
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Summary Points of the TAC Discussion of The Effects of Temperature on 
Salmonids and Watershed Temperature Patterns 
 
 

The Physiological Basis for Salmonid Temperature Response 
1) Water temperature governs the basic physiological functions of salmonids and 

is an important habitat factor. 
2) Fish have ranges of temperature wherein all of these functions operate 

normally contributing to their health and reproductive success.  Outside of the 
range, these functions may be partially or fully impaired, manifesting in a variety 
of internal and externally visible symptoms.  Salmon have a number of 
physiologic and behavioral mechanisms that enable them to resist adverse 
effects of temporary excursions into temperatures that are outside of their 
preferred or optimal range.  However, high or low temperatures of sufficient 
magnitude, if exceeded for sufficient duration, can exceed their ability to adapt 
physiologically or behaviorally.   

3) Salmon are adapted over some evolutionary time frame to the prevailing water 
temperatures in their natural range of occurrence, and climatic gradient are 
among the primary factors that determine the extent of a species’ geographic 
distribution on the continent. 

4) Salmon are considered a “cold water” species, and generally function best 
within the range of ambient temperatures in water bodies within their natural 
range of occurrence.  This range is 0-30oC for salmonids, where end 
temperatures are lethal and mid range temperatures are optimal.  The southern 
limit of the natural range of salmonids coincides with the occurrence of summer 
water temperatures of 30oC.  

5) The effects of temperature are a function of magnitude and duration of 
exposure.  Exposure to temperatures above 24oC of sufficient continuous 
duration can cause mortality. 

6) Salmon can tolerate each successively lower temperature for exponentially 
increasing intervals of time.  Temperatures above 22oC are stressful.  Lengthy 
exposure to higher temperatures include loss of appetite and failure to gain 
weight, competitive pressure and displacement by other species better adapted 
to prevailing temperatures, or disease.  

7) Growth occurs best when temperatures are moderate and food supplies are 
adequate.  High and low temperatures limit growth.  Optimal temperatures for 
growth are in the range of 14 to 17oC, depending on species.   
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8) Salmon have been shown to increase in size in streams where riparian canopy 
was removed due to increased light and food availability, despite the 
occurrence of warmer temperatures.    

9) Larger size generally increases survival and reproductive success.   
10) Growth rates are important for anadromous salmonids, who must reach 

minimum sizes before they are able to migrate to the ocean.  Missing normal 
migration windows by being too small or too large may have negative effects on 
success in reaching the ocean.  

11) The temperature of rivers and streams ranges over the full range of 
temperatures within the range utilized by salmonids during the course of the 
year.  The summer maximum temperatures are generally those of most 
concern.   

12) The most thermally tolerant salmonid species that occur in California 
(steelhead, chinook and coho).  Of these species, coho are the most thermally 
sensitive.  

 

Temperature Exposure in Natural Streams and Potential Effects of 
Forest Practices 
 

1) Water temperature generally tends to increase in the downstream direction with 
stream size as a result of systematic changes in the important environmental 
variables that control water temperature.  As streams widen, riparian canopy 
provides less and shade until some point in a river system where it provides no 
significant blocking effect. Cooler groundwater inflow also diminishes in 
proportion to the volume of flow in larger streams.   

 
2) The lowest order streams have the coolest water temperatures near 

groundwater temperature (11-14oC).  Higher order streams are near ambient 
air temperatures (20-26oC).  The range of water temperature from lower to 
higher orders in California rivers and streams during the warmest period in the 
summer spans much of the tolerable temperature range for salmonids.  Water 
temperature typical of higher order streams are within stressful levels for 
salmonids.  

 
3) Removal of riparian vegetation may increase stream temperatures up to the 

ambient air temperature, depending on the natural extent of shading and the 
proportion of canopy removed.   Thus, temperatures typically observed only in 
downstream reaches may occur in tributary streams.  

 
4) Salmonid distribution within stream systems and within the region reflects 
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temperature tolerance.  Coho are found in the cooler waters associated with 
headwater streams and within the coastal zone where climate is strongly 
influenced by the Pacific Ocean.  Steelhead have somewhat higher thermal 
tolerance, and are more widely distributed.   
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Copy of Journal Article  by Moore, R. D, D.L. Spittlehouse, 
and A. Story (2005)  
 
 
 
 
Article 
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TAC Primer on The Physiological Basis For Salmonid 
Temperature Response and Watershed Pattern of Use 
 
 

The Physiological Basis for  Salmonid Temperature Response 
Water temperature is a dominant factor affecting aquatic life within the stream 
environment (Hynes 1970).  Water temperature affects important stream functions such 
as processing rates of organic matter, chemical reactions, metabolic rates of macro-
invertebrates, and cues for life-cycle events (Sweeney and Vannote 1986).   Water 
temperature plays a role in virtually every aspect of fish life, and adverse levels of 
temperature can affect behavior (e.g. feeding patterns or the timing of migration), 
growth, and vitality.   
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Water temperature governs the rate 
of biochemical reactions in fish, 
influencing all activities by pacing 
metabolic rate (Frye 1971).  Fish 
are poikilothermic or “cold-
blooded”.  This means that fish do 
not respond to environmental 
temperature by feeling hot or cold.  
Rather, they respond to 
temperature by increasing or 
decreasing the rate of metabolism 
and activity.  Water temperature is 
the thermostat that controls energy 
intake and expenditure.  

Figure 3.  Coho salmon daily growth rate as a function of temperature 
and daily food ration.  

 
The role of temperature in 
governing physiologic functions of 
salmonids has been studied 
extensively (Brett 1971; Elliott 
1981; reviewed in Adams and 
Breck 1990; Brett 1995, 
McCullough 1999).  The 
relationship between energetic 
processes and temperature have 
been quantified for many fish 
species with laboratory study.  
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Energetic processes are expressed as functions of activity rate in relation to 
temperature.  The relationships between energy-related functions and temperature 
follow two general patterns:  either the rate increases continuously with rise in 
temperature (e.g., standard metabolic rate, active heart rate, gastric evacuation), or the 
response increases with temperature to maximum values at optimum temperatures and 
then decreases as temperature rises (e.g., growth rate, swimming speed, feeding rate) 
(Brett 1971, Elliott 1981). Each function operates at an optimal rate at some 
temperature and less efficiently at other temperatures.   
 
For example, daily growth as a function of temperature is shown in Figure 1.  Beginning 
with the coolest temperatures (0o C), growth increases with temperature up to the 
optimal due to increasing consumption and food conversion efficiency.   At 
temperatures above the optimal, growth rates decline as consumption declines in 
response to temperature and metabolic energy costs increase (Brett 1971, Elliott 1981, 
Weatherly and Gill 1995).  Because the shape of growth curves is relatively broad at the 
maximum, there is little or no negative effect of temperature several degrees above 
optimum.  Some investigators define the optimal temperature as the temperature at 
which maximum growth occurs, and refer to the range of temperature where growth 
occurs as “preferred” temperatures (Elliott 1981).   
 
The general form of this relationship is similar for all salmonid species, varying 
somewhat in the details of growth rates and optimal temperatures.  All salmonids have a 
similar biokinetic range of tolerance, performance, and activity.  They are classified as 
temperate stenotherms (Hokanson 1977) and are grouped in the cold water guild 
(Magnuson et al. 1979).  Significant differences in growth rate and temperature range 
exist among families of fish (Christie and Regier 1988).  Some families grow best in 
colder temperatures (e.g. char), and many grow better in warmer temperatures (e.g. 
bass). Differences in the specific growth/temperature relationships among species in 
large measure explain competitive success of species in various temperature 
environments. 
 
The range of environmental temperature where salmonid life is viable ranges from 0-30 
oC, with critical temperatures varying somewhat by species.   Salmonid physiologic 
functions operate most effectively in the mid regions of the range where growth is also 
optimized.  Physiological functions are impaired on either end of the temperature range 
so that the geographic distribution of prevailing high or low temperatures ultimately 
limits the distribution of the species in the Salmonidae family (Eaton 1995).    
 
The effects of temperature are a function of magnitude and duration of exposure.  
Figure 2 from Sullivan et al. 2000 summarizes the general relationship of salmonid 
response to temperature exposure.  Salmon species are similar in this pattern, but vary 
somewhat in the temperatures zones of response.   
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Exposure to temperatures above 24oC can elicit mortality with sufficient length of 
exposure.  The temperature where death occurs within minutes is termed the ultimate 
upper incipient lethal limit (UICL). This temperature is between 28- 30oC, varying by 
salmon species.  Clearly, salmon populations are not likely to persist where this 
temperature occurs for even a few hours on a very few days each year (Eaton 1995).  
Lethal exposure is defined as up to 96 hours of continuous exposure to a given 
temperature. 
 
Salmon can tolerate each successively lower temperature for exponentially increasing 
intervals of time.  They do so by altering food consumption and limiting the metabolic 
rate and scope of activity (Brett 1971, Elliott 1981, Weatherly and Gill 1995).  This 
resistance to the lethal effects of thermal stress enables fish to make excursions for 
limited times into temperatures that would eventually be lethal (Brett 1956; Elliott 1981).  
The period of tolerance prior to death is referred to as the “resistance time” (Figure 2) 
(Hokanson 1977, Jobling 1981).   Salmon can extend their temperature tolerance 
through acclimation.  Brett (1956) reported that the rate of increase in ability to tolerate 
higher temperatures among fish is relatively rapid, requiring less than 24 hours at 
temperatures above 20oC.  Acclimation to low temperatures (less than 5oC) is 
considerably slower.   
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Figure 4.  General biological effects of temperature on salmonids in relation to duration and magnitude of 
temperature (from Sullivan et al. 2000). 
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Laboratory and field studies have repeatedly found that salmon can spend very lengthy 
periods in temperatures between 22 and 24oC without suffering mortality (Brett 1995, 
Bisson et al. 1988; Martin 1988).  Temperatures within this range may be stressful, but 
are not typically a direct cause of mortality (Brett 1956). Temperatures that cause 
thermal stress after longer exposures, ranging from weeks to months, are termed 
chronic temperature effects.  Endpoints of lengthy exposure to temperature that are not 
physiologically optimum may include loss of appetite and failure to gain weight, 
competitive pressure and displacement by other species better adapted to prevailing 
temperatures (Reeves et al. 1987), change in behavior, or susceptibility to disease.    
Werner et al. (2001) documented correlations between stream temperature, size of 
juvenile steelhead and heat shock protein expression. 
 
Fish may be able to avoid thermal stress by adjusting behavior, such as moving to 
cooler refugia.  Numerous observers have observed behavioral adjustment by seeking 
cool water refugia when temperature in normal foraging locations reaches 22°C 
(Donaldson and Foster 1941; Griffiths and Alderdice 1972; Wurtsbaugh and Davis 
1977; Lee and Rinne 1980; Bisson et. al. 1988; Nielsen et al. 1994, Tang and Boisclair 
1995; Linton et al. 1997; Biro 1998).  Fish resume feeding positions when temperatures 
decline below this threshold.  At very low temperatures, salmonids cease feeding and 
seek cover under banks or within stream gravels (Everest and Chapman 1972). 
 
Less quantifiable in a dose-response context are relationships involving temperature 
and disease resistance, and temperature effects on sensitivity to toxic chemicals and 
other stressors. (Cairns et al. 1978).  For temperature to affect the occurrence of 
disease, disease-causing organisms must be present, and either those organisms must 
be affected by temperature or fish must be in a weakened state due to the effect of 
temperature. Some disease-causing organisms may be more prevalent at high 
temperature, others are more prevalent at low temperature, and some are not 
temperature-related.   Thus, the interaction of temperature and disease is best 
evaluated on a location-specific basis.     
 
If energy intake is adequate to fuel the physiological energy consumption, mediated in 
large part by the environmental temperature, then the organism can live in a healthy 
state and grow.  Growth is a very important requirement for anadromous salmon living 
in fresh water.  Salmon emerge from gravels in their natal streams measuring 
approximately 30 mm in length and weighing approximately 0.5 gram.  Adults returning 
to spawn 3 to 5 years later typically measure 500 to 1000 mm in length and weigh from 
5 to 20 kg depending on species.  This enormous increase in body mass (greater than 
5000 times) must be accomplished within a very limited lifespan.  Salmon have evolved 
from a fresh water origin to spend a major portion of life in a marine habitat where there 
is far greater productivity and where the majority of growth occurs (Brett 1995).   
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Juvenile salmon must achieve the first six times increase in weight in their natal stream 
before they can smolt and migrate to the ocean (Weatherly and Gill 1995).  Coho and 
steelhead generally smolt within 1 year, but can require as long as 3 years to achieve 
sufficient size to begin the transition to salt water.  The long-term exposure of salmonids 
to temperature during their freshwater rearing phase has an important influence on the 
timing of smoltification and the ultimate size fish achieve (Warren 1971, Brett 1982, 
Weatherly and Gill 1995, Sullivan et al. 2000).   
 
The size of salmonids during juvenile and adult life stages influences survival and 
reproductive success (Brett 1995). Larger size generally conveys competitive 
advantage for feeding (Puckett and Dill 1985, Nielsen 1994) for both resident and 
anadromous species. Smaller fish tend to be those lost as mortality from rearing 
populations (Mason 1976; Keith et al. 1998).  Larger juveniles entering the winter period 
have greater over-wintering success (Holtby and Scrivener 1989; and Quinn and 
Peterson1996).   Growth rates can also influence the timing when salmon juveniles 
reach readiness for smolting. Missing normal migration windows by being too small or 
too large, or meeting a temperature barrier, may have a negative effect on success in 
reaching the ocean (Holtby and Scriverner 1989). 
 
How large a salmon can grow in a natural environment is fundamentally determined by 
environmental and population factors that determine the availability of food. Water 
temperature regulates how much growth can occur with the available food.  Brett et al. 
(1971) described the freshwater rearing phase of juvenile salmon as one of restricted 
environmental conditions and generally retarded growth.  Many studies have observed 
an increase in the growth and productivity of fish populations in streams when 
temperature (and correspondingly) food is increased.  This tends to occur even in the 
cases where temperatures exceed preferred and sometimes lethal levels (Murphy et al. 
1981, Hawkins et. al., 1983, Martin 1985, Wilzbach 1985, Filbert and Hawkins 1995).   
 
Table 1 summarizes results from laboratory and field studies of coho and steelhead 
temperature response (from Sullivan et al 2000).  Steelhead and coho are similar, 
though not identical, in the temperatures at which various functions or behaviors occur.  
Importantly, Sullivan et al (2000) showed that even though the laboratory optimal growth 
temperatures for steelhead are within a narrower and cooler range than those of coho 
(e.g. their “growth curves”), steelhead grow better than coho when exposed to higher 
temperatures in natural streams.  These authors suggest that this disparity results from 
a greater efficiency in obtaining food in natural environments by steelhead, thus 
allowing them to generally obtain a higher ration of food.  Bisson et al (1988b) showed 
that the body form of these two fish differ, enabling steelhead to feed efficiently in riffle 
habitats where food supply is more abundant.  Thus, steelhead have a higher “net 
temperature tolerance” than coho.  
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With the exception of some spring-run Chinook salmon, most Chinook juveniles do not 
rear in streams through the summer and are therefore not typically exposed to late-
summer conditions.     
 
There has been some suggestion that there may be genetic adaptations by local 
populations that confer greater tolerance to temperatures.  However, literature on 
temperature thresholds for salmonids, as summarized in Table 1 is remarkably 
consistent despite differences in locations of subject fish (Sullivan et al. 2000, Hines and 
Ambrose 2000, Welsh et al. 2001). 
 
One problem encountered in synthesizing laboratory and field studies is how to 
characterize the widely variable stream temperature characteristics of a stream in either 
a physically or biologically meaningful way is lack of standardization on reporting 
summary statistics.  The measures of 7-day maximum values have been shown to have 
biological meaning (e.g. Brungs and Jones 1977).  These types of metrics also provide 
useful indices for comparing temperature among streams.  Sullivan et al (2000) showed 
that all of the short-term high temperature criteria relate closely to one another when 

Table 1.  The spectrum of coho salmon and steelhead  response at temperature thresholds synthesized 
for field and laboratory studies from  Sullivan et al (2000).  Threshold values are approximations, due to 
lack of consistency in reporting temperature averaging methods among studies.  Temperature 
thresholds are standardized to the average 7-day maximum to the extent possible to allow comparison 
of field and laboratory study observations.  

 
Biologic Response 

COHO 
Approximate 

Temperature oC  

STEELHEAD 
Approximate 

Temperature oC 
Upper Critical Lethal Limit (death within minutes)-Lab 29.5 30.5 

Geographic limit of species—Stream annual maximum 
temperature (Eaton 1995)  

30 31.0 

Geographic limit of species—Warmest 7-Day Average Daily 
Max Temperature (Eaton 1995) 

23.4 24.0 

Acute threshold  U.S. EPA 1977—Annual Maximum 25 26 
Acute threshold U.S. EPA 1977— 
7-day average of daily maximum 

18 19 

Complete cessation of feeding ( laboratory studies) 24 24 
Growth loss of 20% (simulated at average food supply) 22.5 24.0 
Increase incidence of disease (under specific situations) 22 22 

Temporary movements to thermal refuges 22 22 
Growth loss of 10% (simulated at average food supply) 

 (7-day average of daily maximum) 
16.5 20.5 

Optimal growth at range of food satiation (laboratory) 12.5-18 10-16.5 
Growth loss of 20% (simulated at average food supply)  

7-day average of daily maximum 
9 10 

Cessation of feeding and movement to refuge 4 
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calculated from the same stream temperature record (7-day mean and maximum, 
annual maximum temperature, and long-term seasonal average).  However, longer-term 
measures are better indicators of general ecologic metabolism.  For example, degree-
summation techniques sum duration of time (days, hours) above a selected threshold 
temperature.  
  

Temperature Patterns and Salmonid Species Distribution Within 
Watersheds  
Temperatures supporting the physiologic functions of fish species reflect the ambient 
temperatures likely to be found in streams in each species’ natural range of occurrence 
(Hokanson 1977).  For salmonids, this range is from 0 to less than 30oC (see Table 1).   
 
Within the range of distribution of salmonids in the Pacific Northwest, there is a west to 
east climatic gradient reflecting the marine influence at the coast and the orographic 
effects of interior mountain ranges.  Coastal zones are characterized by maritime 
climates with high rainfall that occurs during the winter and dry warm summers.  Interior 
zones are dryer, and rainfall may occur as rain or snow.  Summers are very dry, and 
temperatures often hotter than coastal zones, although elevation can have a significant 
cooling effect.  Comparison of river temperatures associated with forested regions 
throughout Washington, Oregon and Idaho show generally consistent occurrence of 
temperatures within the temperature tolerance of salmonids (Sullivan et al. 2000).  
 
The temperature of streams and rivers within the range of distribution of salmonids in 
the Pacific Northwest and California typically vary widely on both temporal and spatial 
scales.  For example, the range of hourly temperature over a year period for a smaller 
headwaters stream and larger mainstem river located within a forested watershed in 
Washington are shown in Figure 3.  (The figure also shows the typical phase and 
migration timing for coho and steelhead salmon.)  Similar patterns are observed in 
forested regions of California.    
 
Active feeding and positive growth can occur at any time during the year when 
temperature is within the positive growth range illustrated in Figure 1.  Juvenile salmon 
experience preferred temperatures for much of the year, and may experience stressful 
temperature conditions for relatively little time during the year.   Water temperatures 
between 8 and 22oC tend to be the most prevalent temperatures observed in natal 
rivers and streams in the Pacific Northwest (Sullivan et al. 2000).  Temperatures high 
enough to directly cause mortality are rare within the region where salmon occur. 
Temperatures high enough to cause stress (>22oC) may be common, especially in 
higher order streams. 
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Watershed Temperature Patterns 
Stream temperature tends to increase in the downstream direction from headwaters to 
lowlands.  (Hynes 1970, Theurer et al 1984).   The dominant environmental variables 
that regulate heat energy exchange for a given solar loading, and determine water 
temperature are stream depth, proportional view-to-the-sky, rate and temperature of 
groundwater inflow, and air temperature (Moore et al, 2005).   Increasing temperature in 
the downstream direction reflects systematic tendencies in these critical environmental 
factors.   Groundwater input becomes a smaller portion of the streamflow and has less 
cooling effect as streams get larger (Sullivan et al 1990). Air temperature increases with 
decreasing elevation (Lewis et al. 2000).  Riparian vegetation and topography shade a 
progressively smaller proportion of the water surface as streams widen (Spence et al. 
1996), until at some location there is no effective shade at all (Beschta et al. 1987, 
Gregory et al. 1991).  Streams gain greater thermal inertia as stream flow volume 
increases (Beschta et al. 1987), thus adjusting more slowly to daily fluctuations in 
energy input.  The typical watershed temperature pattern is illustrated in Figure 4.   
 
Water temperature in larger rivers without riparian shading is in equilibrium with, and 
close to, air temperature.   In smaller streams, water temperature is depressed below air 
temperature due to the cooling effects of groundwater inflow and the shading effects of 
the forest canopy (Sullivan et al. 1990; Poole and Berman 2000, Moore 2005).  The 
minimum temperature profile in Figure 4 indicates the general pattern of water 
temperature in streams in a fully forested watershed. The coolest temperatures will be 

Figure 5. Water temperature of the Deschutes River (148 km2) and Hard Creek (2.3 km2), a headwater tributary in the Cascades 
of  Washington.  Data are hourly measurements. 
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observed in the smallest streams and will be near prevailing groundwater temperature. 
As the effects of these insulating variables lessens in the downstream direction, water 
temperature moves closer to air temperature until the threshold distance where riparian 
canopy no longer provides effective shade and the water temperature is closely 
correlated with air temperature alone (Kothandaraman 1972).   It is likely that the shape 
of the minimum line varies both with basin air temperature and with differences in 
natural vegetation.  
 
Various authors have reported the likely summertime temperatures that mark the 
highest and lowest temperatures on this curve for streams and rivers of the Pacific 
Northwest and California used by salmonids.   Minimum groundwater temperatures are 
approximately 10-13oC (Sullivan et al. 1990, Lewis et al. 2000).  Maximum temperatures 
typically range from 20 to 26oC (Sullivan et al. 2000, Lewis et al. 2000) depending on 
location.    
 

Figure 4.  General pattern of temperature at the watershed scale and potential range of response to forest 
removal.  (from Sullivan et al. 1990).  
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Removal of vegetation in headwater streams may allow temperature to increase up to 
(but not exceed) the basin air temperature maxima.  Thus, the potential response of 
water temperature to forest harvest may be large in small streams, but only small, and 
difficult to detect in mid to large size watersheds.   
 

Fish Species Distribution Within Watersheds 
Salmonid species found in California include Chinook (O. tshawytscha), coho (O. 
kisutch), and steelhead (O. salmo).  These species are the most temperature tolerant of 
the anadromous species in the salmonidae family. The southern-most extent of the 
natural range of salmon is found at latitude approximately equal to San Francisco, 
dipping further south along the coast.  Eaton (1995) showed a strong relationship 
between prevailing summertime maximum temperatures and the end of the range of 
occurrence.     
 
Salmon species throughout their range have evolved to use different parts of the river 
system during their freshwater rearing phase.   Systematic changes in the occurrence or 
dominance of species within river systems in part reflects the temperature patterns as 
one important component of habitat.  Differences among species can confer competitive 
advantages in relation to environmental variables that influence the species’ distribution 
(Brett 1971, Baltz et. al. 1982, Reeves et al. 1987, DeStaso and Rahel 1994).   
 
Steelhead have higher net temperature tolerance, are widely distributed within the 
northern region of California and occupy a broader range of habitats including larger 
rivers and smaller streams. Coho have the lowest net temperature tolerance of the 
salmonids found in California, and are found primarily where temperatures are coolest 
for most of the year.  They primarily occur in the low to mid-order tributaries within the 
coastal zone.   
 
Chinook salmon are perhaps the most temperature tolerant of all salmon species.  They 
have the highest optimal temperatures for growth and fastest growth rates of all the 
salmonids.  Fall run chinook emerge from gravels in spring and move to the larger 
(warmer) rivers where their growth rate allows them to migrate to the ocean with weeks 
to a few months.  The juveniles migrate out of the river before the warmest summer 
temperatures occur.  
 
 An exception are spring-run Chinook salmon.  Some juveniles reside in streams 
throughout the summer.  These salmon are also the only salmonid that must cope with 
summer water temperatures as adults.  They typically enter the Sacramento River from 
March to July and continue upstream to tributary streams where they over-summer 
before spawning in the fall (Myers et al. 1998).  Adult spring-run Chinook salmon require 
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deep, cold pools to hold over in during the summer months prior to their fall spawning 
period. When these pools exceed 21oC adult Chinook salmon can experience 
decreased reproductive success, retarded growth rate, decreased fecundity, increased 
metabolic rate, migratory barriers, and other behavioral or physiological stresses 
(McCullough 1999).   
 

California Regional Temperatures 
To date, there has been no California-wide water temperature study or synthesis of 
available information.  A regional stream temperature study was conducted within the 
Coho ESU by the Forest Science Project at Humboldt State University (Lewis et al. 
2000).  The area where coho occur within California is delineated by the Coho ESU 
includes the northern coast zone and portions of the interior Klamath region.  The 
regional study measured water temperature at hundreds of sites in a variety of streams 
and rivers well distributed within the area from approximately San Francisco northward 
to the Oregon border, and from the coast to approximately 300 km inland.  Stream size 
varied from watershed areas as small as 20 to a maximum of over 2,000,000 hectares.  
The assessment included new data and historical analysis of historic temperature 
assessments, augmented with recently measured temperature at the same locations as 
earlier measurements. 
 
Results of the study provide some general insight into maximum summer stream 
temperatures within this region of California.     

1) The regional study confirmed the general increasing trends in temperature from 
watershed divide to lowlands.   

2) The annual maximum temperature ranged from 12-25oC in the coastal zone 
and 14-32oC inland beyond the coastal influence.  Temperature as high as 
32oC occurs, but is rare.  

3) The cooling influence of the coastal fog belt on air temperature extends as far 
inland as 50 km in some rivers, and is significant enough to affect water 
temperature within a distance 20 km from the coast in some locations.  The 
effect of the cool air is sufficient to reduce some river temperatures by as much 
as 5-7oC degrees by the time water reaches the ocean.  These help prevent 
prolonged exposure to stressful temperatures.  The coast fog zone is the 
dominant zone for coho productivity in the state.   

4) Maximum temperature in rivers in the coastal fog belt can still exceed 20oC 

5) No one geographic, riparian, or climatic factor explains water temperature with 
high precision.  Multiple regression models developed from the data explain 
about 65% of the variability, similar to finding in other parts of the Pacific 
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Northwest (Sullivan et al. 1990). 
 

6) The coolest maximum temperatures (<18oC) are most likely to occur where: 
 

• Distance from divide is less than 10 km.   

• Canopy cover is >75% 

7 The probability of achieving temperature of <20oC decreases at 1) lower canopy 
closure, 2) distance from divide as an indicator of stream size, and   3) with distance 
from the coast.   

 
8 There is relatively small difference in maximum water temperatures between 

interior and coastal streams of similar watershed areas in basins less than 
100,000 hectares in size. 

 
 
What needs to be understood better for California:  
 

1) the availability of cool water at the watershed and population scale  
 

2) the overall cumulative effect of temperature on the annual basis.  
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KEY QUESTIONS:  HEAT AND MICROCLIMATE 
 
Embedded or implied in each key question below are the following issues for the 
contractor’s synthesis: 
 

a. Relationship to each of California’s regions; 
b. Context for riparian buffer strip size: stream order, stream class, 

topography, hydrologic regime, and climate; 
c. Context for comparisons: pristine, ‘optimum’, legacy, or pre-harvest 

conditions 
d. Relationship of the quality of forest management practices being 

evaluated to current California forest practices; ability of BMP’s to 
effectively mitigate identified problems; 

e. Relationship of temperature alterations to salmonid habitat quality 
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How do forest management activities or disturbances within the riparian area 
affect the temperature of forest streams? 
 

a. What conditions of canopy structure, density, and width, influence water 
temperature?  How might this vary with California forest types and 
stream size? 

 
b. Are riparian area microclimates affected by forest management within 

and/or adjacent to fish-bearing streams sufficient to influence water 
temperature? 

 
c. How and to what extent do temperatures in low order streams influence 

temperatures in downstream fish-bearing streams? 
 
 
How and where are the potential temperature effects from forest management 
likely to impact salmonid species of concern? 
 

a. Is there information from California eco-regions indicating the effects of 
observed temperature on salmonids? 

 
b. Are there conditions that adequately ameliorate the occurrence of 

adverse temperatures? 
 
 
What bearing do the findings of this literature review have on riparian zone 
delineation or characteristics of riparian zones for protecting water temperature? 
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Appendix D:  Sediment Riparian Exchange Function 
Primer, Key Questions and Initial List of Literature to be 
reviewed. 
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PRIMER: SEDIMENT RIPARIAN EXCHANGE FUNCTION  
 
Erosion and Sediment Processes in California’s Forested Watersheds 
 
Erosion is a natural process that is well described for California in several college 
textbooks (Norris and Webb 1990, Mount 1995). California’s evolving landscape reflects 
the “competing processes of mountain building and mountain destruction”, with 
landslides, floods, and earthquakes working as episodic forces which often create major 
changes (Mount 1995). In general, the land surface is sculpted by the forces of erosion: 
water, wind, and ice. The physical and chemical composition of the rock determines 
how it weathers by these forces. The role of running water in shaping the earth’s 
surface is considered the most important of all the geologic processes and has received 
the greatest attention by researchers (Leopold et al. 1964; Morisawa 1968).  
 
The rates of natural erosion are very high in the State’s regions having greater amounts 
of rain and snow, such as the geologically young mountains of the Northern Coast 
Ranges, Klamath Mountains, and Sierra Nevada (Norris and Webb 1990). Mean annual 
precipitation was shown to be a relatively precise indicator of climatic stress on 
sedimentation in Northern California (Anderson et al. 1976).  
 
Soil erosion processes on upland watersheds include: a) surface erosion (e.g., dry 
ravel, sheet and  rill), b) gullying, and c) mass movement or wasting (e.g., soil creep and 
landslides, such as slumps, earthflows, debris slides, large rotational slides).  These can 
occur singly or in combination. Falling raindrops can be a primary cause of surface 
erosion, especially where soils have little vegetative cover (Brooks et al. 1991).  Erosion 
products deposited by water become “sediment”, brought to a channel by gravity and 
erosive forces.  The water-related, or “fluvial”, processes active within the stream 
channel and floodplain are: 1) the transport of sediment; 2) the erosion of stream 
channel and land surface; and 3) the deposition or storage of sediment.  
 
Sediment Sizes, Transport & Measurement  
 
Sediment is any material deposited by water, but research usually describes sediment 
according to its size, means of transport, and method of measurement (MacDonald et 
al. 1991, Leopold 1994). Inorganic sediment ranges in size from very fine clay to very 
large boulders. Particle size classes tend to be split into a different number of size 
categories by physical scientists (AGI 2006) and by biologists (Cummins 1962). The 
Modified Wentworth Scale is commonly used by biologists (Waters 1995) and includes 
11 particle sizes and names: clay, silt, sand (five classes), gravel, pebbles, cobbles, and 
boulders.  In addition, sediment includes particulate organic matter, composed of 
organic silts and clays and decomposed material.  Grain size terminology can also vary: 
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• Fine-grained sediment (“fines”) includes the smaller particles, such as silt and 
clay (usually <0.83 mm in diameter). The largest size class for this category 
varies, sometimes including sand and small gravel (1-9 mm) (Everest et al. 
1987). 

• Coarse-grained sediment represents the larger particles, such as gravels and 
cobbles. It makes up the bed and bars of many, if not most, rivers. The smallest 
size class for this category varies, and sometimes includes sand and small gravel 
(1-9 mm). 

 
Whatever the term used, it is important to understand the sediment definition and 
particle size that each research article is using before extrapolating the results. 
 
Sediment is transported by streams as either suspended load of the finest particle sizes 
(from clay to fine sand <2.0 mm) that are carried within the water column, or as bedload 
of the larger particles (from coarse sand to boulders) that never rise off the bed more 
than a few grain diameters. Higher velocity and steeper streambed slope can transport 
larger grain size, for example.  
 
Since the measurement of sediment transport levels can be problematic, it is done in 
several ways. (For detailed descriptions of common methods, including the strengths 
and limitations of each, see MacDonald et al. 1991, Gordon et al. 1992, and Waters 
1995.) 
 Suspended sediment samplers measure direct suspended sediment 
concentration (SSC) in milligrams of sediment per liter of water (mg/l). Since most 
sediment transport takes place during high flows, samples must be taken during these 
periods to develop long-term averages. Many samples are needed near peak 
discharges to determine the error margin. Two types of samplers can be used: depth-
integrating and point-integrating. 
 Turbidity is a measure of the ability of light to be transmitted through the water 
column (e.g., the relative cloudiness). Turbidity sampling and meters are often used as 
a substitute for the direct measurement of the suspended sediment load of a selected 
stream reach, but the relationship may vary and requires a careful study design to make 
accurate correlations Turbidity is frequently higher during early season runoff and on the 
rising limb of a storm’s runoff; automated data collection is now being used to more 
accurately capture such infrequent events (Eads and Lewis 2003).  Turbid water may 
also be due to organic acids, particulates, plankton, and microorganisms (which can be 
ecologically beneficial); interpretation must therefore be carefully done. In redwood-
dominated watersheds of north coastal California, Madej (2005) found the organic 
content of suspended sediment samples ranged from 10 to 80 weight percent for 
individual flood events.  Turbidity is not a good indicator for movement of coarse-
grained sediments, such as sand in granitic watersheds, since these larger grain sizes 
move at the bottom of the water column or as bedload (Morisawa 1968; Sommarstrom 
et al. 1990; Gordon et al. 1992).  
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 Bedload measurement can be a difficult method since this larger-sized 
sediment must be collected manually during high flows when bedload is in transport. 
While there are different types of methods and equipment, the Helley-Smith bedload 
sampler has become the standard for bedload measurement, especially for coarse sand 
and gravel beds. Multiple samples must be taken per cross-section of stream. Bedload 
cannot be collected automatically as readily as suspended sediment can.  Bedload as a 
percentage of suspended load can range from 2-150 percent; 10 percent bedload would 
be a conservative estimate for a storm event with muddy-looking water in a gravel-bed 
stream. 
 
Sediment that is deposited within stream channels can be measured by changes in 
channel characteristics. The most common methods include:  a) channel cross-
sections, b) channel width / width-depth ratios; b) pool parameters (e.g., fines stored in 
pools (V*)), c) bed material (particle-size distribution, embeddedness, surface vs. 
subsurface particle size); d) longitudinal profiles in upstream-downstream directions 
(e.g., using the “thalweg”, the deepest part of the stream channel). 
 
 
Fluvial Processes and Sediment 
 
Stream reaches can be defined by the dominant fluvial processes: erosion /transport / 
storage (Schumm 1977; Montgomery and Buffington, 1997; Bisson, et al, 2006).  The 
steep headwaters tend to be the source of erosion, the middle elevation streams are the 
transfer zone, and the low elevation streams are the depositional zone. However, any 
given stream reach demonstrates all three processes over a period of time; the relative 
importance varies by location in the watershed.  
 
Natural Sources of Sediment 
 
Within the riparian zone, natural sediment sources and the effects of the riparian zone 
tend to vary by the type of channel reach (Montgomery and Buffington, 1997; Bisson, et 
al, 2006).  The uppermost parts of many source reaches are characterized by exposed 
bedrock, glacial deposits, or colluvial valleys or swales.  Stream reaches in bedrock 
valleys are usually strongly confined and the dominant sediment sources are fluvial 
erosion, hillslope processes, and mass wasting. The colluvial headwater basins have 
floors filled with colluvium which has accumulated over very long periods of time.  Such 
channels as may exist are directly coupled with the hillslopes, and their beds and banks 
are composed of poorly graded colluvium.  Stream flow is shallow and ephemeral or 
intermittent.  The colluvial fill is periodically excavated by debris flows which scour out 
the stream channels and delivery large quantities of sediment and large woody debris to 
downstream reaches (Montgomery and Buffington, 1997; Bisson, et al, 2006).  There is 
often is no distinctively riparian vegetation bordering the channels. 
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A bit further downstream, transport reaches commonly still have steep gradients, are 
strongly confined and subject to scouring by debris flows.  Stream beds are 
consequently characterized either by frequent irregularly arranged boulders or by 
channel-spanning accumulations of boulders and large cobbles that separate pools.  
The boulders move only in the largest flood flows and may have been emplaced by 
other processes (e.g., glacial till, landslides).  Streams generally have a sediment 
transport capacity far in excess of the sediment supply (except following mass wasting 
events).  Dominant sediment sources are fluvial and hillslope processes and mass 
wasting (Montgomery and Buffington, 1997; Bisson, et al, 2006).  The transition 
between transport and response reaches is especially likely to have persistent and 
pronounced impacts from increased sediment supply (Montgomery and Buffington, 
1997). 
 
In the higher response reaches, stream gradients and channel confinement become 
more moderate.  Incipient floodplains or floodprone areas may begin to border the 
channels, so they are not so coupled to hillslope processes. The typical channel bed is 
mostly straight and featureless with gravel and cobble distributed quite evenly across 
the channel width; there are few pools. Where the bed surface is armored by cobble, 
sediment transport capacity exceeds sediment supply, but unarmored beds indicate a 
balance between transport capacity and supply. Dominant sediment sources are fluvial 
processes, including bank erosion, and debris flows are more likely to cause deposition 
than scouring (Montgomery and Buffington, 1997; Bisson, et al, 2006).  There is usually 
distinctively riparian vegetation along the channel. 
 
Also in low to moderate gradients, braided reaches may form where the sediment 
supply is far in excess of transport capacity (e.g., glacial outwash, mass wasting) and/or 
stream banks are weak or erodible (Buffington, et al, 2003).  Channels are multi-
threaded with numerous bars.  The bars and channels can shift frequently and 
dramatically, and channel widening is common. The size of bed particles varies widely. 
Banks are typically composed of alluvium. Bank erosion, other fluvial processes, debris 
flows, and glaciers are the dominant sediment sources.  Distinctively riparian vegetation 
is common, and is especially important in providing root strength to weak alluvial 
deposits (Bisson, et al, 2006).  
 
In lower-elevation, lower-gradient response reaches, channels are generally sinuous, 
unconfined by valley walls, and bordered by floodplains.  Beds are composed of gravel 
or sand arranged into ripples or dunes with intervening pools.  Sediment supply 
exceeds sediment transport capacity, so much of the finer sediment is deposited 
outside the channel onto the floodplain.  The dominant sediment sources are fluvial 
processes, bank erosion, inactive channels, and debris flows.  Distinctively riparian 
vegetation typically grows on the floodplain where it plays important roles in: i) 
reinforcing weak alluvial banks and floodplains, and ii) providing hydraulic roughness to 
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reduce erosion during overbank flooding (Montgomery and Buffington, 1997; Bisson, et 
al, 2006).   
  
Natural sediment production in undisturbed watersheds can vary significantly, 
depending upon soil erodibility, geology, climate, landform, and vegetation. Delivery of 
sediment to channels by surface erosion is generally low in undisturbed forested 
watersheds, but can vary greatly by year (Swanston 1991). Annual differences are 
caused by weather patterns, availability of materials, and changes in exposed surface 
area. Sediment yields for surface erosion tend to be naturally higher in rain-dominated 
than in snow-dominated areas. Soil mass movement is the predominant erosional 
process in steep, high rainfall forest lands of the Pacific Coast. The role of natural 
disturbances in maintaining and restoring the aquatic ecosystem is becoming more 
recognized by scientists using interdisciplinary approaches (Reeves et al. 1995).  
 
California Examples 
Landslides are an important sediment source in northern coastal ranges of California, 
particularly where they were active in the wet period of the late Pleistocene and have 
remained dormant for long periods. If reactivated by undercutting at the toe, these slides 
can deliver immense amounts of sediment to channels (Leopold 1994). Kelsey (1980) 
found in the Van Duzen River basin that avalanche debris slides accounted for 
headwater erosion storage, but that natural fluvial hillslope erosion rates were quite low. 
In the North Coast range, small headwater streams tend to aggrade their beds during 
small storms and degrade during large, peak flow events. However, in larger streams, 
sediment aggrades during large events and gradually erodes during smaller ones 
(Janda et al.1978).   
 
Sediment budgets offer a quantitative accounting of the rates of sediment production, 
transport, storage, and discharge (Swanson et al. 1982; Reid & Dunne 1996). They are 
performed in California by academic researchers (Kelsey 1980; Raines 1991), 
consultants (e.g., Benda 2003), and agencies.  In a review of sediment source analyses 
completed for agency-prepared Total Maximum Daily Load (TMDL) allocations in nine 
north coast California watersheds, the amount of the “natural” sediment source 
contribution ranged from a low of 12% to a high of 72% over the past 20-50 year period 
(Kramer et al. 2001). An evaluation of sediment sources in a granitic watershed of the 
Klamath Mountains found 24% of the erosion and 40% of the sediment yield to be 
natural background levels in 1989 (Sommarstrom et al. 1990). Post-fire erosion can be 
a major component of sediment budgets in semi-arid regions of California (Benda 
2003). 
  
Role of Riparian Vegetation  

 
Forested riparian ecosystems influence sediment regimes in many ways. First, riparian 
plant species are adapted to flooding, erosion, sediment deposition, seasonally 
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saturated soil environments, physical abrasion, and stem breakage (Dwire et al. 2006). 
Sediment transported downslope from overland flow passes by riparian vegetation, 
where it can accumulate or be transported through the riparian area (USEPA 1975; 
Swanson et al. 1982b). The significance of vegetation’s role in providing bank stability 
and improving fish habitat was first recognized as early as 1885 (Van Cleef 1885). 
Riparian plant roots help provide streambank, floodplain, and slope stability (Thorne 
1990; Abernathy and Rutherford 2000; NRC 2002) and can bind bank sediment, 
reducing sediment inputs to streams (Dunaway et al. 1994). Bank material is much 
more susceptible to erosion below the rooting zone, but vegetated banks are typically 
more stable than unvegetated ones (Hickin 1984). Soil, hydrology, and vegetation are 
interconnected in bank stability, though the understanding has developed more slowly 
(Sedell and Beschta 1991; NRC 2002). For example, the effect of riparian vegetation 
roots on the mass stability of stream banks may be overestimated in erosion models, 
according to recent research (Pollen and Simon 2005). In a study on the Upper Truckee 
River, California, a willow species provided an order of magnitude more root 
reinforcement than lodgepole pine and reduced the frequency of bank failures and 
sediment delivery (Simon, Pollen, and Langendoen 2006). 
Riparian vegetation patterns appear to indicate specific landforms and local 
hydrogeomorphic conditions; the patterns differ by geographic location and climate, 
such as semi-arid versus humid regions (Hupp and Ostercamp 1996). Since streamside 
areas tend to have high moisture and low soil strength, they are vulnerable to 
compaction and physical disturbance (Dwire et al. 2006). For some sediment processes 
originating from upslope of the riparian zone, vegetation may have little influence. 
Large, deep-seated landslides are probably not affected by streamside plants and 
downed wood, for example (Swanson et al. 1982b). Current conditions of riparian plant 
communities need to be viewed in the context of the historical alterations to the 
landscape, including land management (NCASI 2005).  

     
 

Effects of Sediment on Aquatic Life of Streams      
 
While erosion processes can provide sources of gravels for fish spawning, excessive 
sediment deposition can be harmful to aquatic life.  Habitat needs for anadromous 
salmonid fish of the Pacific Coast are well described by Bjornn and Reiser (1991), with 
a review of the effects of fine sediment on fish habitats and fish production compiled by 
Everest et al. (1987), Furniss (1991), Walters (1995), Spence et al. (1996), and CDFG 
(2004). A brief summary of the effects of sediment on critical life stages of salmon and 
trout is as follows: 
 

• Spawning:   Fine sediment can become embedded in spawning gravels, reducing 
the abundance and quality available for spawning and possibly preventing the 
female from excavating her nest (redd); excessive sediment loading can cause 
channel aggradation, braiding, widening, and increased subsurface flows, all 

Appendix A-G  Page 138 of 183 
Request for Proposal: Scientific Literature Review of Forest Management Effects on Riparian Functions in 
Anadromous Salmonid Fisheries 
July 10, 2007 

 
Page 138 of 183 

 



 

reducing spawning gravel abundance; excess sediment can fill pools that are 
needed for rest and escapement of adults migrating upstream to spawn.  

• Egg Incubation:   Excessive fine sediments can suffocate or impede egg 
development or developing alevins by reducing or blocking intragravel water flow, 
oxygenation, and gas exchange. Organic sediment, however, can provide 
valuable food (e.g., bugs) for fish (Madej 2005). 

• Juvenile Rearing:   Coarse and fine sediment can fill pools, which reduces the 
volume of habitat available for critical rearing space and the population that can 
be sustained; fine sediment can cover the streambed and suffocate benthic 
macroinvertebrates, reducing availability of important food source (Suttle et al. 
2004).  Chronic turbidity from suspended fine sediment interferes with feeding 
effectiveness of fry and smolts, reducing their growth rate or forcing them to 
emigrate (Sigler et al. 1984; Newcombe and Jensen 1996; Rosetta 2004). 

The review by Everest et al. (1987) demonstrated that the effects of fine sediment on 
salmonids are complex and depend on many interacting factors: species and race of 
fish, duration of freshwater rearing, spawning escapement within a stream system, 
presence of other fish species, availability of spawning and rearing habitats, stream 
gradient, channel morphology, sequence of flow events, basin lithology, and history of 
land use (Furniss et al. 1991). It also should be noted that research on the effect of “fine 
sediment” on salmonid reproduction (e.g., percent survival of fry emergence from eggs) 
varies in the definition of sediment size, ranging from 0.85mm to 9.5 mm, but tends to 
focus on 2.0 millimeters or less (Everest et al. 1987). One needs to be careful in 
interpretation of the literature when comparing the effects of differently defined “fines” 
(Sommarstrom et al. 1990.)  
 
The first major literature review on the aquatic effects of human-caused sediment was 
published in 1961 by California Dept. of Fish and Game biologists Cordone and Kelley, 
who concluded that sediment was harmful to trout and salmon streams.  Productive 
streams, at every trophic level, contain stored sediment and large organic debris and 
are more productive than channels with too little or too much sediment (Everest et al. 
1987). An early California study of streams with increased sedimentation found that fish 
biomass decreased in some streams and increased in others (Burns 1972). Stream 
macroinvertebrate diversity was significantly decreased in stream reaches below failed 
logging road crossings, implying the effect of higher sediment levels (Erman et al. 
1977). In a review of stream characteristics in old-growth forests, the authors noted that 
many streams in California have naturally high sediment loads, including an abundance 
of fines less than 1 mm, but historically these streams supported healthy populations of 
salmonids (Sedell and Swanson 1984). 
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Forest Management & Sediment Effects 
 
The literature on the erosion and sediment impacts of forest operations is quite 
extensive, though much of it comes out of the Pacific Northwest. Most of the California 
research on private forestland has focused on the north coastal redwood region, 
particularly in the Caspar Creek Experimental Watershed of the Jackson Demonstration 
State Forest in Mendocino County (e.g., Zeimer 1998; Rice et al. 2004) and in the 
Redwood Creek watershed as part of Redwood National Park related research (e.g., 
Best et al. 1995; Madej 2005).  
 
Historic Logging Practices 
 
Certain mid-20th century logging practices were clearly identified as harming water 
quality. Clearcut logging, of large portions of a watershed down to the edge of streams, 
and the logging road system, were noted as a major source of sediment in earlier 
studies in Oregon (Brown and Krygier 1971; Swanson and Dyrness 1975) and 
California (Cordone and Kelly 1961; Burns 1972). Cordone and Kelley in 1961 
perceived that the bulk of stream damage was caused by carelessness and could be 
prevented “with little additional expense”, they thought at the time. Over thirty years ago, 
Burns (1972) examined logging and road effects on juvenile anadromous salmonids in 
northern California streams, with all streams showing sediment increases following 
logging. Evidence was also gathered to show that good logging practices could reduce 
sedimentation problems in the western region (Haupt and Kidd 1965; Brown 1983).  
 
Sediment and other impacts led to a series of increasingly protective measures for 
forestry operations on public and private lands in the U.S. In 1973, California’s State 
Water Resources Control Board recommended improved timber harvest and road 
construction methods at the time of the passage of the State Forest Practice Act but 
prior to the adoption of the Forest Practice Rules in 1975 by the Board of Forestry 
(SWRCB 1973). Tighter stream protection rules were later required by the State, as 
described under Riparian Buffers below. Berbach (2001) describes  the evolution of 
such measures for private forestland in California.  
 
Roads as a Major Source of Sediment 

 
Logging roads have historically been the largest, or one of the largest, sources of forest 
management-related sediment (Trimple and Sartz 1957; Megahan and Kidd 1972; 
Burns 1972; Anderson et al. 1976; Adams & Ringer 1994). One study found that roads 
can contribute more sediment per unit area than that from all other forestry activities, 
including log skidding and yarding (Gibbons and Salo 1973). Roads can affect streams 
directly through the acceleration of erosion and sediment loadings, the alteration of 
channel morphology, and changes in the runoff characteristics of watersheds. 
Sedimentation was often greatest when major storm events occurred immediately after 
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construction, while surface erosion usually declined over time with revegetation of 
roadsides and natural stabilization (Beschta 1978). A long-term study in Caspar Creek 
in Mendocino County found similar results, but also a lag of sediment transport as 
material only moved during periods of high runoff and streamflow (Krammes and Burns 
1973). In landslide prone terrain, road-related erosion could continue unless certain 
design, construction and maintenance practices were carried out, or high erosion 
hazard areas were avoided. Much of the research of logging road effects was on roads 
that had been constructed in the 1950’s, 60’s and 70’s, before improved road location 
and design to minimize potential slope stability and erosion problems were applied. By 
the early 1990s, steps were being taken to minimize the negative effects of roads on 
streams through both construction and maintenance practices (Furniss et al. 1991; 
Weaver and Hagans 1994). 

 
Channel crossings, within the riparian area, are often the primary cause of water quality 
problems associated with roads and the resultant ecological impacts (USFS 1976; 
Erman et al. 1977; Forman and Alexander 1998). Debris blockages of undersized 
culverts and flood flows can cause the failure of the logging road stream crossing, 
delivering large volumes of crossing-fill sediment directly into the channel. In a long-
term erosion evaluation of the Redwood Creek watershed, researchers found significant 
gullying problems due to logging roads, particularly due to diversions at plugged stream 
culverts or ditch relief culverts (Hagans et al. 1986). These diversions created complex 
channel networks and increased downslope drainage density, yet 80% of all gully 
erosion was avoidable, the authors stated, through minor changes in road construction 
techniques. 
 
Heavily used, unsurfaced logging roads also can produce significantly more sediment 
and turbidity than abandoned roads, with one study in Washington State showing a 130 
fold increase (Reid and Dunne 1984). Road surface sediment can drain into roadside 
ditches and then into streams, delivering fine sediment detectable by turbidity sampling 
below the road (Bilby et al. 1989). The problem can be effectively minimized, the 
authors noted, by draining the ditch onto the forest floor in small quantities to infiltrate, 
by using better road construction and surfacing material, and by leaving woody debris 
within the stream. Ketcheson and Megahan (1996) evaluated the potential sediment 
filtration effectiveness of the riparian zone below road fills and culverts in granitic terrain, 
finding that road sediment travel distance increased with increasing volume of eroded 
material.  
 
In some locations, road placement within the stream riparian zone can encroach on the 
floodplain and channel and force streamflows to the opposite bank, potentially 
destabilizing the hillslope and causing increased landsliding. Roads located within the 
landslide-prone inner valley gorge, where very steep slopes are adjacent to streams, 
are at high risk of frequent or iterative failure (Furniss et al. 1991). A study in the 
Klamath Mountains of northwestern California noted this relationship (Wolfe 1982). If 
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roads must be located in a valley bottom, a buffer strip of natural vegetation between 
the road and the stream is recommended (Furniss et al. 1991). 
 
High quality roads and better maintenance are likely to reduce the amount of material 
supplied to channels from hillslopes, reduce the amount of sediment mobilized along 
low order streams, and reduce the sediment delivery rate to high order streams (Furniss 
et al. 1991; Slaymaker 2000). In the past decade, methods to inventory logging road 
drainages for their potential to deliver sediment have become more standardized 
(Flanagan et al. 1998; CDFG 2006). Road erosion studies need to be examined in the 
context of geology and soil types, such as the highly erosive granitics (e.g., Megahan 
and Kidd 1972). 
 
Some studies have compared the effects of old to new forest practices. Cafferata and 
Spittler (1998) compared the effects of logging in the 1970s to the 1990s in the Caspar 
Creek watershed  in Mendocino County found that “legacy” roads continue to be 
significant sources of sediment deca des after construction.   Recent Total Maximum 
Daily Load (TMDL) studies in north coastal California watersheds assessed sediment 
sources over multiple decades, but the analyses did not distinguish whether logging 
road-related sediment originated from roads constructed before or after the Forest 
Practice Act in 1973 (Kramer et al. 2001). However, timber operations under the 
“modern” Forest Practice Rules produced an estimated erosion rate one-tenth that of 
pre-1976 practices on a tributary of Redwood Creek (Best et al. 1995). Rice (1999) 
cautioned about direct comparisons of different studies with different objectives, but 
concluded that road-related erosion in Redwood Creek was significantly reduced due to 
improved road standards (e.g., better sizing and placement of culverts).  In 1999, the 
Scientific Review Panel on California Forest Practice Rules and Salmonid Habitat made 
nine recommendations on road construction and maintenance, including the removal of 
legacy roads within the riparian zone (Ligon et al. 1999). 
 
Riparian Buffers in Forest Management 
 
The concept of using vegetation and/or obstructions to form buffer strips to minimize or 
retard downslope sediment movement has been applied to agricultural and forestry 
operations for many years (Broderson 1973; USEPA 1975). Buffer strips are defined as 
riparian lands maintained immediately adjacent to streams or lakes to protect water 
quality, fish habitat, and other resources (Belt et al. 1992). Limiting mechanical 
harvesting activities within streamside zones is appropriate to protect their vulnerability 
to compaction and physical disturbance, due to high moisture and low soil strength 
factors (Dwire et al. 2006). 
 
The U.S. Forest Service adopted the Streamside Management Zone (SMZ) in the 
1970s as a Best Management Practice (BMP), for closely managed harvesting, to act 
as an effective filter and absorptive zone for sediment, to protect channel and 
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streambanks, and other benefits (USFS 1979). Each National Forest’s Forest Plan also 
has Standards and Guidelines for the protection of riparian areas, including specific 
BMPs (Belt et al. 1992).  In 1975,  the California Board of Forestry first adopted the 
Stream and Lake Protection Zone (SLPZs) as part of the state’s Forest Practice Rules 
(FPRs); these riparian zone protections were later expanded by the Watercourse and 
Lake Protection Zone (WLPZ) in 1983, 1991 and 2000 (Berbach 2001). While the 
benefits of such riparian protections are not challenged, the extent of the buffer strips 
(i.e., upslope and upstream) to balance ecological, water quality, and management 
needs continues to be debated (Dwire et al. 2006). 
 
Direct physical disturbance of stream channels and soils within the riparian area by 
timber harvest activities can increase sediment discharge (Everest et al. 1987). In a 
1975 California field study, physical damage to streambanks during logging was caused 
by equipment operating through streams, by yarding and skidding timber through 
channels, and by removal of streamside vegetation. Failed road crossings deposited 
sediment into the streams, reducing the diversity of the aquatic invertebrate community 
(Erman et al. 1977). Grant (1988) identified a method, primarily through aerial 
photograph analysis, to detect possible downstream changes in riparian areas due to 
upstream forest management activities. 
 
More recent studies have looked at the design of forest riparian buffer strips to protect 
water quality. The authors of one literature summary stated, “we cannot overemphasize 
the importance of maintaining the integrity of the riparian zone during harvest 
operations” in relation to erosion and sedimentation processes (Chamberlin et al. 1991). 
The use of riparian buffers and BMPs has generally decreased the negative effects of 
forest harvest activities on surface water quality (Belt et al. 1992; Norris 1993). 
However, even an intact riparian buffer strip cannot prevent significant amounts of 
hillslope sediment from entering a stream via overland flow (due to infiltration and 
saturation excess in severely disturbed soil) or from debris slides originating outside the 
riparian zone (Belt and O'Laughlin 1994; O’Laughlin & Belt 1995). 
 
One area of research receiving more attention is the riparian zone within headwater and 
low order streams (e.g., first and second).  Sediment deposited in low order streams 
(which tend to be Class III under FPR rules) may be delivered to high order streams 
(e.g., third and fourth) that are usually Class I and II.  Moore (2005) summarizes the 
latest results of this headwater research in the Pacific Northwest. MacDonald and Coe 
(2007) have recently investigated the influence of headwater streams on downstream 
reaches in forested areas, including the connectivity and effects of sediment. These 
recent research papers and others on this topic need to be thoroughly examined before 
consensus can be reached on the conclusions. 
 
In recent years, the use of riparian buffer zones as a management tool has increased. 
For public lands in the Pacific Northwest, Riparian Reserves (RR) were set aside under 
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the Northwest Forest Plan in 1994, where silvicultural activities were not allowed for 
multiple reasons, including water quality (Thomas 2004). For private forest lands, 
stream protection zones have increased in importance and restrictions in the past 
decade due to the federal and state listings of anadromous salmonid species as 
threatened or endangered (Blinn and Kilgore 2001; Lee et al. 2004). The current WLPZ 
rules for California were tightened from the 1991 Rules to protect listed fish species 
under the “Threatened or Impaired” (T/I) Rules, adopted as Interim Rule Requirements 
by the BOF in 2000, based in part on the recommendations of the Scientific Review 
Panel (Ligon et al. 1999; Berbach 2001). Research is now needed on the effects of 
these newer riparian protection zones, with comparisons made to previously designated 
zones. 
 
 Recent Sediment Evaluations of Forest Practices 
 
Evaluations of forest practices producing and delivering sediment, as a nonpoint 
pollution source, revealed that Best Management Practice (BMP) implementation was 
generally good across the U.S., but cases of noncompliance persisted (especially for 
road and skid trail BMPs (SWRCB 1987; Binkley and Brown 1993). The authors 
recommended compliance and effectiveness monitoring must therefore be an ongoing 
activity. 
 
The Board of Forestry’s Monitoring Study Group (MSG) has overseen two recent 
evaluations of the effectiveness of the Board’s Forest Practice Rules (FPRs). The 
Hillslope Monitoring Program (Cafferata and Munn 2002) evaluated monitoring results 
from 1996 through 2001, while the Modified Completion Report (Brandow et al. 2006) 
continued analysis of data from 2001 through 2004. Both studies found that: 1) the rate 
of compliance with the FPRs designed to protect water quality and aquatic habitat is 
generally high, and 2) the FPRs are highly effective in preventing erosion, 
sedimentation and sediment transport to channels when properly implemented. The 
2006 report concluded the following: 
 

 In most cases, Watercourse and Lake Protection Zone (WLPZ) canopy and groundcover 
exceeded Forest Practice Rule (FPR) standards. With rare exceptions, WLPZ groundcover 
exceeds 70%, patches of bare soil in WLPZs exceeding the FPR standards are rare, and 
erosion features within WLPZs related to current operations are uncommon. Moreover, in most 
cases, actual WLPZ widths were found to meet or exceed FPR standards and/or widths 
prescribed in the applicable THP… 
 When properly implemented, road-related FPRs were found to be highly effective in 
preventing erosion, sedimentation and sediment transport to channels. Overall implementation 
of road-related rules was found to meet or exceed required standards 82% of the time, was 
marginally acceptable 14% of the time, and departed from the FPRs 4% of the time. Road-
related rules most frequently cited for poor implementation were waterbreak spacing and the 
size, number and location of drainage structures… 
 Watercourse crossings present a higher risk of discharge into streams than roads, because 
while some roads are close to streams, all watercourse crossings straddle watercourses. 
Overall, 64% of watercourse crossings had acceptable implementation of all applicable FPRs, 
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while 19% had at least one feature with marginally acceptable implementation and 17% had at 
least one departure from the FPRs. Common deficiencies included diversion potential, fill slope 
erosion, culvert plugging, and scour at the outlet… 

 
Attention has recently focused on riparian management of  low order streams by 
management agencies, the public, and scientists. Gaps in knowledge are still being 
identified for the Pacific region and the diversity of riparian management standards 
continue to be debated (Young 2000; Moore 2005).  
 
 
   What We Do Not Know or Do Not Yet Agree Upon: 
 

• The need for buffer strips along low order (e.g., 1st, 2nd) streams to prevent or 
minimize the delivery of sediment to higher order streams during forestry 
operations.  

 
• The amount of forest management that can be performed within a designated 

riparian buffer zone without accelerating sediment production and delivery. 
 

• The sediment effects of the newer, riparian protection zones for forest 
management, with comparisons made to previously designated zones. 

 
• The relevance of forest management research on sediment relationships in 

riparian zones in other western states to California, and the relevance of such 
research in California’s north coastal redwood region to other region’s of the 
state. 
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KEY QUESTIONS:  SEDIMENT 
 

Much research has occurred on the relationship of forest management practices to 
sediment production and delivery (see Sediment Primer). Although roads and 
watercourse crossings have been identified as a primary sediment source, their impacts 
are not the focus of this BOF-TAC effort except where appropriate within the scope of 
the following key questions. Seeking to resolve the remaining uncertainties related to 
forest management effects on sediment and the riparian zone is the emphasis of this 
investigation. 
 
Embedded or implied in each key question below are the following issues for the 
contractor’s synthesis: 

A. Relationship to each of California’s regions; 
B. Context for riparian buffer strip size: stream order, stream class, topography, 

hydrologic regime, and climate; 
C. Context for comparisons: pristine, ‘optimum’, legacy, or pre-harvest 

conditions; 
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D. Relationship of the quality of forest management practices being evaluated to 
current California forest practices; ability of BMPs to effectively mitigate 
identified problems; 

E. Relationship of sediment alterations to salmonid habitat quality and feeding 
effectiveness. 

 
 

1) How do forest management activities or disturbances in or near the riparian 
zone affect the production of sediment over space and time? 
a) To what extent and with what mechanisms are zero and low-order streams (e.g., 

first- and second-order) and their riparian zones a significant source of sediment 
production in unmanaged and managed forest areas? 

b) How effective are current forest management practices in or near the riparian 
zone in mitigating the production of sediment in higher-order streams (e.g., third-
order and higher)? 

c) To what extent and in what ways is sediment production from channels, 
streambanks and flood-prone areas affected by current forest management 
practices? Does plant succession stage or vegetative community have any 
effect? 

  
2) How do forest management activities or disturbances in or near the riparian 

zone affect the delivery and storage of sediment over space and time? 
a) To what extent and with what mechanisms are zero and low-order streams (e.g., 

first- and second-order) a significant source of sediment delivery in unmanaged 
and managed forest areas? 

b) How effective are current forest management practices in mitigating the delivery 
of sediment in higher-order streams (e.g., third-order and higher)?  

c) To what extent and in what ways is sediment delivery from channels and 
streambanks and storage on flood-prone areas affected by current forest 
management practices?  Does plant succession stage or vegetative community 
have any effect? 

d) Are there forest practices that can remobilize the sediment deposited within the 
riparian zone and flood-prone areas and redeliver into the stream system? 

e) How effective are riparian buffer zones in providing a sediment filtering function 
in unmanaged and managed forest areas? 

 
3)  Based on the results of the above, what riparian zone delineation  or 

characteristics (e.g., cover, plant species and structure, etc.) are shown to be 
needed to ameliorate sediment production and delivery from managed 
forests? 
a)     Is there a threshold or degree of effectiveness based on benefit (e.g., channel 

and streambank stability, upslope filtration, surface stability in floodprone areas, 
sediment storage due to hydraulic roughness)?  
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b)     How does effectiveness vary by geographical region, geology, size of 
watershed, vegetation, stream reach, forest practices within and nearby the 
zone, etc.? 

c)      What are the types of erosion events for which buffer zones are not effective in 
preventing or reducing sediment delivery and those for which they are relatively 
effective? 
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Salmonid Life-Cycle Needs Related to Water 
 
Important habitat characteristics for salmonids in streams include minimum 
streamflow, obstructions to flow that create debris dams and have other effects 
on stream shape, and gravel necessary for spawning (Botkin and others 1994).  
The riparian zone along streams influences all of these factors.  Streamflow, and 
the sediment this flow transports, interact with large wood, boulders, and bedrock 
outcrops to produce physical characteristics of streams required by fish, including 
side channels in floodplains, and pools and riffles in small main-stream channels. 
 
The amount, velocity, and depth of water required by salmonids varies 
depending on the life stage.  Bjornn and Reiser (1991) present a comprehensive 
review of this topic for North American salmonids.  Migrating fish require water 
depths that allow upstream passage [e.g., minimum water depths of 0.09 m to 
0.12 m for chum salmon, depending on substrate particle size (Sautner and 
others 1984)].  Streamflow affects the amount of spawning habitat available by 
regulating the area covered by water and the velocities and depths of water over 
gravel beds [e.g., velocities ranging from 0.3 to 3.0 m/s and a minimum depth of 
0.18 m (Thompson 1972)].  Stream discharge, followed by water velocity, are the 
most important factors in determining the amount of suitable living space for 
rearing salmonids [e.g., velocities < 10 cm/s for newly emerged salmon and trout 
fry (Everest and Chapman 1972); depths ranging from water barely deep enough 
to cover juveniles to > 1 m (Bjornn and Reiser 1991)].1  In general, salmonid 
carrying capacity increases as streamflow increases up to a point, and then 
levels off or declines if velocity becomes excessive (Bjornn and Reiser 1991, 
Murphy 1995).   
 
Minimum streamflows in both summer and late fall are critical for juvenile rearing 
and successful spawning for salmonids, respectively.  Murphy (1995) reported 
that minimum streamflow in summer limits salmonid carrying capacity on a broad 
scale.  For example, total commercial catch of coho salmon off of Washington 
and Oregon was found to be directly related to the amount of summer streamflow 
when the juveniles were in streams two years before (Smoker 1955, Mathews 
and Olson 1980).  Botkin and others (1994) found that streamflow, especially the 
minimum flow in November three and four years prior to adult returns, accounted 
for most of the variation in adult spring Chinook adult salmon returning to spawn 
in the Rogue River in Oregon. 
 
Effects of Forest Management on Peak Flows, Low Flows, and Water Yield 
 
The effects of forest management activities on streamflow have been studied 
since the early 1900’s and are summarized in Ziemer and Lisle (1998) and 
Moore and Wondzell (2005).  Changes in peak flows, low flows, and water yield 
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resulting from forest removal are very complex.  The magnitude of change to 
both water yield and peak flows depends on the amount and location of the 
harvest, the stand age and composition of the vegetation removed, soil and 
lithologic characteristics, topography, and climatic conditions.  The persistence of 
the effect is largely determined by the rate and composition of vegetation re-
occupying the disturbed site.   
 
In terms of aquatic habitat, key hydrologic concerns relate to changes in summer 
low flows, and in peak flows and their effects on channel stability and sediment 
transport (Moore and Wondzell 2005).  In a comprehensive review of forestry 
impacts on aquatic habitats, Botkin and others (1994) concluded that there is no 
evidence or reason to believe that changes in flow due to forest harvest would be 
deleterious to fish.  They state that increases in flood peaks would be expected 
to cause a slight increase in channel mobility and an increase in the transport of 
bed sediment (factors that relate to spawning and rearing habitat), but there do 
not appear to be field studies relating changes in flooding to degradation of fish 
habitat.   
 
Peak Flow Changes 
 
Ziemer and Lisle (1998) provide a comprehensive description of how changes in 
peak flows associated with forest management vary with watershed size, type of 
precipitation, season, and flood magnitude.  In general, the effects of forest 
practices are more pronounced and easier to detect in small watersheds, greater 
in areas where rain-on-snow events occur, greater in the fall months, and greater 
for frequent runoff events.  More detailed information on these principles and 
specific examples and are provided in the paragraphs that follow.   
 
Substantial (e.g., >30-50% clearcut) harvesting in small to medium-sized 
watersheds2 over short time periods is required to noticeably increase small to 
medium recurrence-interval peak flows associated with timber harvesting.  
Limited harvesting in riparian areas alone cannot affect flood frequency or 
magnitude.   
 
Ziemer (1998) reported a 9 percent increase in 2-year peak flows following 
clearcutting approximately 50 percent of the North Fork Caspar Creek watershed 
(5 km2), located near Fort Bragg, California.3  Ziemer and Lisle (1998) state that: 
“There is little evidence that forest practices significantly affect large floods 
produced by rain. However, it is possible that clearcutting exacerbates some 
rain-on-snow floods, although the magnitude of such an effect is highly variable 

                                            
2 Ziemer and Lisle (1998) define small basins as having drainage areas < 1 km2 (~250 ac) and 
large basins as >100 km2 (~25,000 ac). Medium-sized basins can be considered be on the order 
of 10 km2 (~2,500 ac).     
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and difficult to measure or detect.”4 They also explain that the greater the size of 
the flood or basin being investigated, the less likely that there will be any 
detectable changes caused by forest practices.   
 
Specific peak flow studies in the Pacific Northwest confirm these conclusions. 
Thomas and Megahan (1998) found that treatment effects decreased as flow 
event size increased and were not detectable for flows with 2-year return 
intervals or greater for small treated watersheds that were either clearcut or 
patchcut with roads in the H.J. Andrews Experimental Forest, located in the 
western Cascade Mountains of Oregon in the rain-on-snow zone. Beschta and 
others (2000) analyzed the same data and concluded that treatment effects were 
unlikely for peak flows with recurrence intervals of approximately 5 years or 
greater, and that a relationship could not be found between forest harvesting and 
peak discharge in the large basins.   
 
In a broad summary of the literature, Moore and Wondzell (2005) reported that 
peak flows increased following forest harvesting in most studies in coastal 
catchments, with increases ranging from 13 percent to over 40 percent based on 
the original analyses. They also found that in coastal watersheds, the magnitude 
of forest practice-related peak-flow increases declined with increasing event 
magnitude in most cases, with the greatest increases typically associated with 
autumn rain events on relatively dry catchments.  Moore and Wondzell (2005) 
state that peak flow change does not appear to be related in any simple way to 
the percentage of basin area cut or basal area removed, and that estimates of 
post-treatment recovery rates varied among studies.   
 
Timber harvesting affects the amount of interception loss that takes place in 
forested watersheds. This, in turn, may influence changes in winter peak flows. 
Interception loss has been reported as approximately 20% in coastal California 
forests (Reid and Lewis, in press), and more generally as about 10 to 30 percent 
of total rainfall, depending on canopy characteristics and climatic conditions 
(Moore and Wondzell 2005).  Differences in interception loss between logged 
and unlogged areas are likely to explain the majority of the observed increases in 
larger winter peak flows, when transpiration is at its annual minimum (Ziemer 
1998, Lewis and others 2001). 
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Small increases in peak flows (< 10%) for 2-5 yr return interval events have been 
found to be relatively benign and have not been judged to be capable of 
substantially modifying the morphology of the stream channels (Ziemer 1998).  
This is due to the fact that the magnitude of peak flow changes is substantially 
less than the within-a-year and year-to-year variability in streamflows. The 
changes are within the normal range of variability of streamflows (Grant and 
others 1999).   
 
In addition to harvesting effects, roads can have significant hydrologic impacts 
(Coe 2004).  Several studies have shown that logging roads can intercept 
shallow subsurface flow and rapidly route it to the stream network, potentially 
leading to increased peak flows in headwater basins (Moore and Wondzell 
2005), or possibly delayed peaks in larger watersheds due to desynchronization 
of peak flows from tributary basins.  Pathways linking the road network to stream 
channels include roadside ditches draining directly to streams, and roadside 
ditches draining to culverts that feed water into incised gullies (Wemple and 
others 1996).  Accelerated runoff at the road segment scale also results since 
haul roads have compacted surfaces with low permeability that generate 
overland flow in even moderate rainstorms (Coe 2004, Moore and Wondzell 
2005).   
 
At the basin scale, paired-watershed studies have not shown strong evidence to 
support road-induced increases in peak flows.  Studies may have been 
hampered by insufficient pre-treatment calibration data, lack of treatment 
replication, and poor experimental control (i.e., road building and timber 
harvesting have often occurred simultaneously or in quick succession) (Thomas 
and Megahan 1998, Coe 2004).  Modeling studies have shown that increases in 
peak flows due to roads were approximately equal to the effects from timber 
harvesting (i.e., canopy removal) in an experimental watershed in western 
Washington (Bowling and Lettenmaier 2001).  The effect of both activities 
declined as the flow recurrence interval increased.  Additionally, modeling studies 
suggest that roads can decrease baseflow during the critical summer months 
(Tague and Band 2001).  However, much uncertainly still exists regarding the 
hydrologic effects of roads at the watershed scale (Coe 2004, Royer 2006). If 
there are impacts from road building on peak flows, these effects will be more 
pronounced and easier to detect in smaller basins (Ziemer and Lisle 1997).   
 
Channel aggradation, or filling of the channel bed with sediment, can have a 
significant effect on flood height or flooding.  Where aggradation is severe, it is 
more important for overbank flooding than changes in runoff due to logging 
operations (Lisle and others 2000).  Widespread channel aggradation can occur 
in low gradient reaches of watersheds if the sediment production rate has been 
significantly accelerated above background rates by mass wasting and surface 
erosion and delivery processes.  If this happens, similar magnitude peak flows to 
those which would have occurred earlier can cause more extensive over-bank 
flooding downstream because of reduced channel capacity.  These flood events 
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would be the consequence of rainfall/runoff/channel aggradation interactions, 
rather than rainfall/runoff interactions.  The area flooded would be changed by 
the altered channel configuration, even if the amount of water remained the 
same. 
 
Low Flow Changes 
 
Forest removal in mountainous watersheds will increase low summer and early 
fall streamflows, as well as total water yield.  Botkin and others (1994) reported 
that while total water flow in a stream is important to salmon, flow increases 
during summer and early fall that can augment streamflow at a critical season for 
juvenile rearing are more important than the changes in magnitude of total 
annual flow.  Nearly all published reports on timber harvesting and resulting 
changes in summer low flows have shown that streamflow will either increase or 
remain unchanged in proportion to the amount of vegetation removed in the 
watershed.  Harvested areas contain wetter soils than unlogged areas during 
periods of evapotranspiration, and hence higher groundwater levels and greater 
late-summer streamflow (Chamberlin and others 1991).   
 
Studies have documented that the post-treatment recovery rates are highly 
variable depending on the severity of the treatment and the vegetation 
reoccupying the site, along with physiographic and climatic characteristics.  Often 
increases are fairly short-lived, as regeneration begins to utilize surplus soil 
moisture and intercepts precipitation.  After approximately 10-30 years, baseflow 
(and peak flow rates) have returned to normal or decreased below pre-harvest 
levels due to rapidly growing hardwoods that transpire more water than mature 
conifer trees (Murphy 1995, Moore and Wondzell, 2005).  Long-term effects of 
logging on summer low flows likely depends primarily on species composition 
before and after harvest (Spence and others 1996, Moore and Wondzell 2005). 
In general, summer low flows are more sensitive to transpiration from riparian 
vegetation than from vegetation in the rest of the catchment (Moore and 
Wondzell 2005).   
 
One example in California of documented water yield changes with both selective 
harvesting and clearcutting has taken place in the Caspar Creek watershed.  The 
effects of selective logging on low flows were examined in the South Fork Caspar 
Creek watershed, where 64 percent of the second-growth stand volume of coast 
redwood and Douglas-fir was tractor logged from 1971 to 1973.  Statistically 
significant summer low flow enhancements were evident for 7 years after 
logging.  Minimum discharge increases averaged 38 percent after the selective 
harvesting and summer low flow volumes increases averaged 29% between 
1972 and 1978 (Keppeler and Ziemer 1990, Rice and others 2004).  The average 
length of the part of the low flow period when flow in the South Fork was less 
than 0.2 cfs was shortened by 43 days form 1972 to 1978, a 40% reduction.  As 
in previous studies, most of the enhanced streamflow (average annual water 
yield) increase (approximately 90 percent) was realized during the rainy season 
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while greater relative increases were witnessed during the summer low flow 
period (Keppeler 1986). 
 
In the North Fork Caspar Creek watershed, approximately 50 percent of the 
watershed was clearcut harvested over about 7 years (1985 to January 1992).5  
Minimum discharge increases averaged 148 percent at the North Fork weir and 
flow enhancement persisted through hydrologic year 1997 with no recovery trend 
observed.  The larger increases in the North Fork were probably due to wetter 
soils in the clearcut units, where little vegetation was present to use the 
additional moisture (Keppeler 1998). This data suggests that water yield effects 
will persist longer after clearcutting than when a similar timber volume is removed 
from a watershed with selective cutting.  These differences in water yield 
recovery are probably related to changes in rainfall interception and 
evapotranspiration (Rice and others 2004).  Enhanced summer low flows 
improve aquatic habitat in stream channels.  In the Caspar Creek study, higher 
discharge levels increased habitat volumes and lengthened the flowing channel 
network along logged reaches during the summer and early fall months 
(Keppeler 1998).   
 
The amount of increased water flow caused by forest management activities on 
summer low flows of large rivers is unknown, but Botkin and others (1994) state 
that based on studies extrapolated elsewhere, it is reasonable to assume that 
there would be a small positive effect.  Given the importance of low flow 
increases to salmonid production, however, this change may be significant.   
 
Annual Water Yield Changes 
 
For total annual water-yield changes with forest management, most small-
watershed studies have shown that in areas with significant precipitation (>100 
cm/yr or ~40 in/yr), increases in streamflow are proportional to the reduction in 
forest cover.  This is due to reduced losses from evapotranspiration by the trees 
in rain-dominated systems.  Moore and Wondzell (2005) reported that in rain-
dominated small catchments, clearcutting and patch-cutting increased yields by 
up to 6 mm for each percentage of basin harvested, while selective cutting 
increased yields by up to about 3 mm for each percentage of basal area 
removed.  Increased water yield, however, is not uniformly distributed seasonally 
or throughout the rotation in the Pacific Northwest and California.  Most of the 
annual increase occurs in the winter high-runoff season and during the wetter 
years, rather than during the summer season and drought years, when the 
additional water is needed (Ziemer 1987).6  When vegetation reduction in a 
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watershed is less than 20 percent, the expected water-yield increase is not 
measurable and the remaining trees will likely use as much water as the original 
stand (Bosch and Hewlett 1982).   
 
Ziemer (1987) summarized the literature on this subject and reported that total 
water yield increases resulting from management in larger basins would be very 
small and not measurable.  For example, Kattelmann and others (1983) 
estimated that for National Forest lands in Sierra Nevada watersheds, streamflow 
could only be increased one percent if multiple use/sustained yield guidelines 
were followed.   
 
While there is some evidence in the arid southwestern United States that 
expansion of the phreatophytic riparian forests along rivers can contribute to 
streamflow declines (Thomas and Pool 2006), this does not appear to be a 
significant concern for most California watersheds with coniferous forests.  For 
forest streams with narrow strips of riparian forest, riparian vegetation water use 
is usually a small portion of the overall water budget and probably has minor 
influence on annual water yield (Dr. Julie Stromberg, Arizona State University, 
Tempe, AZ, personal communication).  As an example, complete felling of a strip 
of riparian vegetation in a small watershed at Coweeta Hydrologic Laboratory in 
North Carolina produced only very minor water yield increases (Hewlett and 
Hibbert 1961).  With the limited harvesting in riparian zones that is allowed under 
the current forest practice rules in California, water-yield increases are not 
expected to be measurable.   
 
Stormflow Generation 
 
Water is transferred through riparian zones to channels by surface and 
subsurface flow.  Shallow or lateral subsurface flow from hillslopes in steep 
forested watersheds in the western United States is widely recognized as a main 
contributor to stream flow generation; however, processes that control how and 
when hillslopes connect to streams are still being studied.  Much of the difficulty 
in deciphering hillslope response in the stream is due to riparian zone modulation 
of these inputs (McGuire and McDonnell 2006).  
A key concept for forested watersheds is that there is great temporal and spatial 
variability in how water is transferred to the channel.  Streamflow in small 
forested headwater basins is usually generated from an expanding and 
contracting source area, often denoted as the variable source area, representing 
a fraction of the total basin area.  The source of streamflow is usually that part of 
the basin nearest the perennial, intermittent, and ephemeral channels.  Source 
areas (the hydrologically-active areas that contribute directly to stormflow) can 
vary from only one percent of the total basin area in small storms to 50 percent or 
more in very large storms.  The percentage of saturated source area in a 
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watershed is topographically sensitive (i.e., higher percentages occur with gentler 
slopes).  The source areas within a watershed are very dynamic, expanding and 
contracting during events as the influx of precipitation progresses and then ends.   
 
Moisture redistribution continues following the rain event as slower lateral 
hillslope drainage supplies additional moisture to lower slope positions. Direct 
runoff and its source area increase due to channel expansion and slope water 
movement (Hewlett and Nutter 1970, Troendle 1985).  Riparian areas associated 
with perennial and larger intermittent streams remain at or near saturation during 
the winter and hence are hydrologically active for transporting water by saturated 
overland flow and rapid subsurface flow via soil macropore and/or displacement 
flowpaths.  Smaller intermittent and ephemeral streams are only active when the 
hydrologic network expands sufficiently to incorporate steeper-gradient channels.  
Ephemeral first order channels (typically Class III watercourses) flow only in 
response to direct rainfall, and, although they are part of the hydrologic network, 
they do not generally have riparian zones because hydrophilic (water-dependent 
or water-loving) plants are usually absent. 
 
Water Exchange and Transfer within the Riparian/Floodplain Zone 
 
Water is exchanged in riparian zones, and larger floodplains in several ways.  
Streams either gain water from inflow of groundwater (i.e., gaining stream—
moving water from the riparian zone to the channel) or lose water by outflow to 
groundwater (i.e., losing stream—moving water from the channel into the riparian 
zone).  Many streams do both, gaining in some reaches and losing in other 
reaches.  Input of cold groundwater to the bottom of pools can be a key refugia 
feature for anadromous fishes in summer months (Osaki 1988).   
 
The riparian zone has been conceptualized as a zone of transmission of ground 
water and hillslope water to the stream channel, as well as a direct router of 
precipitation and snowmelt when the riparian water table rises to the ground 
surface.  Between storms, and even during small storms with dry antecedent 
conditions, subsurface inputs from adjacent hillslopes are often minimal.  At 
these times, two-way exchanges of water between the stream and the riparian 
aquifer (hyporheic exchange) can become important (Moore and Wondzell 
2005).  The hyporheic zone is an area adjacent to the channel and below the 
floodplain (if present) where surface water and groundwater mix. Hyporheic 
zones link aquatic and terrestrial systems and serve as transition areas between 
surface water and groundwater systems. The hyporheic zone contains species 
common to both surface and subsurface systems, including a diverse community 
of macroinvertebrates.  Few hyporheic studies have focused on unconstrained 
headwater streams in the Pacific Northwest. Consequently, the knowledge of 
hyporheic hydrology draws largely upon studies of larger, unconstrained streams.   
 
Transpiration by vegetation in the riparian zone may extract groundwater from 
the riparian aquifer, producing a diurnal decrease in riparian water-table level and 
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in streamflow, followed by recovery at night.  Lundquist and Cayan (2002) report 
that diurnal cycles are evident in many western river records and that daily 
variation in streamflow is often 10-20% of the daily mean flow.  Harvesting in the 
riparian zone can have a significant influence on riparian-zone hydrology through 
its effect on transpiration and water-table drawdown, potentially dampening or 
eliminating diurnal fluctuations in discharge and increasing low-flow discharges 
(Bren 1997).  During extended periods of low flow, sections of small streams dry 
up wherever stream discharge is insufficient to both maintain continuous surface 
flow and satisfy water losses through the bed and banks. Stream drying may 
occur frequently in the headmost portions of the channel network, interrupting 
connectivity (Moore and Wondzell 2005).  Also, forestry-related changes in 
channel morphology can substantially influence stream-aquifer interactions.  
Channel incision and simplification of channel morphology during large floods 
can substantially lower water tables and reduce exchange flows of water 
between the stream and the riparian aquifer (Wondzell and Swanson 1999).   
 
 

Neither the effect of forest harvesting nor the effect of riparian buffer strips on 
hyporheic exchange flows has been directly examined in small headwater 
streams (Moore and Wondzell 2005).   Moore and Wondzell (2005) hypothesize, 
however, that because channel morphology strongly controls hyporheic 
exchange, it is reasonable to assume that timber operations that lead to losses in 
channel complexity would reduce interactions between the stream and the 
riparian aquifer.  In contrast, they state that efforts to minimize management 
impacts on channels, such as retention of riparian buffer strips, would help 
preserve stream-aquifer interactions.  The ecological implications of decreased 
stream-aquifer interactions are stated as being difficult to predict with current 
knowledge.  Moore and Wondzell (2005) report that Wondzell and Swanson’s 
research (1996) suggests that such decreased interactions could lead to reduced 
nutrient cycling and reductions in stream productivity.       
 
Forest Management Impacts on Water Transfer/Exchange Processes  
 
Forest management activities include timber falling, timber yarding, road and 
crossing construction and use, site-preparation activities, herbicide applications, 
forest thinning, etc.  Forest operations on a watershed-basis can influence 
surface and subsurface runoff in several ways.  For example, decreased 
interception loss increases the amount of water infiltrating the soil, leading to 
higher water-table levels during storms (Moore and Wondzell 2005).  Limited 
timber falling and tree removal in riparian zones alone will reduce interception 
loss and evapotranspiration, but will likely have little impact on streamflow (low 
flows, peak flows, or annual water yield), as discussed previously.  In contrast, 
ground-based yarding activities in riparian zones and floodplains of larger river 
systems can adversely impact important overflow channels used by salmonids 
during high winter storm discharges.  Additionally, riparian areas are vulnerable 
to both compaction and physical disturbance during ground harvesting 
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operations due to areas of high soil moisture and low soil strength that are 
common within streamside zones. These concerns, along with riparian and 
aquatic habitat protection, provide a basis for limiting mechanical harvesting 
activities within riparian zones (Dwire and others 2006). 
 
Considerably less is known about forest management impacts associated with 
small headwater channels when compared to larger fish bearing watercourses.  
Even though streamflow is sporadic in ephemeral first order channels (typically 
Class III watercourses), it is capable of transporting fine sediment down to fish-
bearing streams.  Rashin and others (2006) found that at several study sites in 
Washington, delivery of sediment to unbuffered tributaries resulted in adverse 
impacts to fish-bearing streams that were otherwise adequately protected by 
riparian buffers.   
 
Field evidence from the Caspar Creek watershed suggested that unbuffered, 
headwater stream channels, particularly in burned areas, contributed significantly 
to suspended sediment loads.  Lewis and others (2001) state that sediment 
increases in the North Fork Caspar Creek tributaries probably could have been 
reduced by avoiding activities that denuded or reshaped the banks of the small 
headwater channels.  Much of the post-harvest increases in sediment yield in the 
North Fork were attributed to harvest-induced storm flow volume increases 
(Lewis and others 2001), suggesting that the hydrologic changes can be 
practically and not just statistically significant (Moore and Wondzell 2005).  
Therefore, there is evidence that increased flows in small headwater channels, 
as well as disturbance of these channels, can produce increased downstream 
sediment transport.  Further discussion of sediment delivery is provided in the 
California State Board of Forestry and Fire Protection’s Technical Advisory 
Committee (TAC) Sediment Primer.   
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KEY QUESTIONS:  WATER RIPARIAN EXCHANGE 
FUNCTION 

 
Embedded or implied in each key question below are the following issues for 
the contractor’s synthesis: 

A. Relationship to each of California’s regions; 
B. Context for riparian buffer strip size: stream order, stream class, 

topography, hydrologic regime, climate; 
C. Context for comparisons: pristine, ‘optimum’, legacy, or pre-harvest 

conditions; 
D. Relationship of the quality of forest management practices being 

evaluated to current California forest practices; ability of BMPs to 
effectively mitigate identified problems; 

E. Relationship of alterations to salmonid habitat quality and feeding 
effectiveness. 

 
 

1. How do forest management activities or disturbances in or near 
riparian zones/floodplains and adjacent to small headwater first and 
second order channels affect flow pathways and streamflow 
generation?   

 
a) Have forest management activities in riparian zones for higher 

order channels with floodplains and adjacent to small headwater 
first and second order channels been shown to alter water transfer 
to stream channels, affecting near-stream and flood prone area 
functions (e.g., source area contributions to stormflow, bank 
instability, lateral and vertical channel migration, flow obstruction or 
diversion of flow)? 

b) Have forest management activities in riparian zones for higher 
order channels with floodplains and adjacent to small headwater 
first and second order channels been shown to result in changes in 
tree canopy/volume that significantly affects evapotranspiration 
and/or interception, with resultant changes in water yield, peak 
flows, low flows, etc.?   

c) Can forest management activities in riparian areas alter water yield, 
peak flows, or low flows sufficiently to affect channel morphology or 
the aquatic ecology of headwater streams? 
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d) Can forest management activities alter water quantity in riparian 
zones for higher order channels with floodplains sufficiently to affect 
overflow/side channels that serve as refugia for fish during floods? 

e) Do forest management activities in riparian zones for higher order 
channels with floodplains and adjacent to small headwater first and 
second order channels significantly affect hyporheic exchange 
flows? 

 
2. What bearing do the findings of the reviewed articles have on 

riparian zone buffer strip delineation (area influencing water 
transfer/exchange function) or characteristics (cover, plant species 
and structure, etc.)? 

[Note that, as opposed to the large wood and heat/microclimate 
functions, defining a buffer strip width for water transfer is difficult, 
since for any given season or year, the saturated riparian zone will 
vary widely] 
 

3.   Are there regional differences in the effects of forest management 
activities or disturbances in or near the riparian area/zone for the 
water transfer riparian function?  Please explain. 
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APPENDIX F:  LITERATURE REVIEW SCREENING 
CRITERIA 
 
1)  Literature is in Primer: Literature the TAC used to create the Primers 

generally would not be included as literature the Performing Entity would 
review as part of the contract.  

 
2)  Literature in Initial List of Literature to be Reviewed:   If literature which is 

already listed in the “Initial List of Literature to be Reviewed” in the 
Appendices for each Key Riparian Function need not be duplicated.  

 
3)  Key Riparian Function:  Literature which contributes to the Key Riparian 

Function topics described in the Scope of Work would be considered for 
review under this contract.  These topics address forest riparian functions for 
anadromous salmonid and the effects forest management has on them.   

or 
 

Scope of Work (SOW) Key Questions: Literature contributes to Key 
Questions developed for each r Key Riparian Function topic in Scope of 
Work/contract.   

 
4)   Peer Reviewed: Literature which is “Peer Reviewed” or meets criteria for 

“Non Peer Reviewed" gray literature would be considered for review under 
this contract. 

 
Gray Literature inclusion criteria:   
 At least three (3) of our TAC members (with multi-stakeholder 

perspectives) will review each of the present gray literature papers.   
 Rate each paper on a 1 to 3 or 1 to 5 scale about its professional 

quality; its scientific contribution to understanding riparian  functions 
 Compare how close we come in our evaluations.  

 
 3)    Currency:  Literature which was published from 1997 to present, unless 

approved by Contracting Representative, would be considered for review 
under this contract.  Literature prior to 1997 should be approved by the 
Contracting Representative prior to inclusion in the contract. 

 
4)     Recommended by Expert:  Literature which was identified by experts in 

Top 10 list of required articles would be considered for review under this 
contract. 

 
5)      Relevance to California:  Literature which applies to California or studies 

conducted in California would be considered for review under this contract.   
Relevance includes similar geomorphologic provinces or bioregions, similar 
topographic conditions.  Geographic areas within California should be 
identified using Ecological Sub region terminology. 
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6)     Quality and Type of Study:   Literature which represents findings from 
large scale field experiments, models, or other descriptive studies, is data 
rich, theory rich, and process rich, and uses already proven study design  
would be considered for review under this contract.   
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APPPENDIX G:  LITERATURE REVIEW 
DOCUMENTATION FORM 

(Note: Responses shall be input into an Access Data base format) 
(Ver: April18,2007) 

 
Riparian Function: 

Bibliographic citation: (use Microsoft Notes format or as following example:  

Chen, Y.D., et al, 1998. Stream temperature simulation of forested riparian areas: 1. model application. J. Environ. Engr., 
124:4:316.)   

 
Key Question(s) addressed (Site Key Questions number)

  
 
 
Summary of findings:  A paragraph that summarizes or quotes the key findings of the 
study.   
 
Location:  Location of research (geographic State, County(ies), Basin/Sub-basin. 
Private or public land ownership) 
 
Type of study:    

 Synthesis of regional literature or ecological theory 
 Observational study of aquatic/riparian function (esp. California) 
 Correlation Study 
 Response Study 
 Cause-and-effect Study 
 Biological Study 
 Forest Management Practices Study 
 Large scale field experiment 

Manipulative Study 
Fish Bearing Stream 
Analytical Model 

 
Year(s) Field Work was Done:  

  
Study Methods:  Methods used in study. Parameters measured. Methods/instruments 
used for measurements (e.g. canopy cover – siting tube, densitometer, solar pathfinder).  
Statistical analysis of the data – ANOVA, non-para, regression, etc. 
 
Forest Management practices used for study:  (e.g., managed/unmanaged, no 
cut/thinning, basal area/# trees, canopy retention, statistics, tools, treatments, etc…) 
Under what rules were the management practices being done under (e.g., Washington 
State Forest Practices Board; USFS – Region 5 – Six Rivers NF)? What date?) 
 
Timeframe:  Timeframe of study and monitoring; relationship to large storm events (if 
any). Specific dates of the study.  General climate and specific weather conditions during 
the study period.   
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Study Area Characteristics Germane to Study: 
Scale of Study:  Stream order; acreage covered 
Hydrological Characteristics:  flow regime (permanent, intermittent, ephemeral); stream 

width, flow, etc 
Stream Reach Characteristics:  erosion, transport, storage; CA FPR Stream Class (I-IV); 

habitat type 
Aquatic Biology:  Aquatic species present/studied; specify which salmonid species 
Riparian Zone Characteristics:  Riparian species (vegetative and animal) 

present/studied; zone width, vegetative structure 
Geomorphic/geologic features and processes:  Bank/channel structure, sediment 

composition, stability, armoring, mass wasting, step/pool, sinuosity, LWD 
function, aggradation, avulsion, accretion, diversion 

Forest Type and Characteristics (redwood / mixed conifer / alpine fir / oak woodland / 
riparian hardwood / etc.; old growth / second growth / mixed age / burned, etc.) 
Geologic/ecologic province: 
Climate regime/zone: 
 
Applicability to geographic areas of California: (use Ecological Subregions of 
California as defined in National Hierarchical Ecological Units and provide 
justification/evidence of basis for Subregion selection)  
 
Salmonid Study:  

Salmonid Life Stage Function:  (Select all that apply) Spawning, Incubation, 
Rearing, Smoltification, Feeding, Migration.   
 
Salmonid Population Viability:  (Select all that apply)Abundance, Productivity, 
Genetic Diversity, Spatial Distribution, Species Diversity  

 
Reference Type:   (Circle one) Subcategories - Literature Review, Journal Article, 
BookChapter, Book, Master’s Thesis, PhD Dissertation, Conference Paper, Conference 
Proceedings, Report, Government Document, Technical Bulletin, Other (specify)_.   
 
Peer-reviewed?      Yes No Probably Don’t Know 
 
Specific Findings Pertinent to California Forest Practices within Riparian Zone: 
(list) 
 
 
Reviewer:   
 
Notes: (including reviewer’s perspective and applicability to riparian function and 
answering Key Questions)  
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